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1 BASIC CONCEPTS OF KINETICS
Steinfeld, J. 1., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 1. (Prentice Hall,
1989).

What is ‘Chemical Kinetics’?
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Chemistry
— the science of chemical compounds (composed of atoms) and their transformations
Phenomenological Thermodynamics Macroscopic or Phenomenological Kinetics
o cquilibrium properties of matter o chemical transformations
e concepts: Free Energy G, e concepts: rate constant £,
equilibrium constant X, ... molecularity and order of a reaction
e ensemble averaged properties e ensemble averaged picture of
reactions
Statistical Thermodynamics Microscopic Kinetics or Reaction Dynamics
o thermodynamics derived from an e molecular origins of chemical
atomic/molecular picture reactions, reaction mechanisms
The chemical bond Dynamics of the chemical bond

Quantum Mechanics

Time-independent Schrodinger equation Time-dependent Schrodinger equation
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1.1 SOME DEFINITIONS

Chemical reactions can be homogeneous (occurring in only one phase) or heterogeneous (occurring in
more than one phase).

Chemical reactions can be irreversible
2H, + 0, - 2H,0
or reversible, i.e. having a forward and reverse reaction
H, +1, 2 2HI

Reactions occurring in a single step are called elementary reactions. The reaction of hydrogen and
oxygen involves several of these elementary reactions, such as

O+H, >OH+H

Reactions consisting of several such steps and therefore involving intermediates are called complex,
composite, or stepwise. The reaction of hydrogen and oxygen is such a complex reaction.

For a stoichiometric equation
aA + bB - cC+dD

we can write down the rates for the consumption of the reactants or creation of the products

d[A]

VAT T
_d[C]
Ve = e

We define the rate of the reaction R as

_1d[A]  1d[B] 1d[C] 1d[D] dx

a dt b dt ¢ dt d dt dt

where R has units of [concentration/time]. Here, we have also defined the extent of the reaction per unit

[A]-[Alg
a

volume x = = ..., where x has units of [concentration]. We assume that the volume is constant.

It is sometimes convenient to define the extent of the reaction & = xV with

1 1
§ = == (n(0) = 1A () = = (nc(®) = nc(0)) = -~

where n; is the molar quantity of compound i and the extent of the reaction & has units of [mol]. Note
that for constant volume

_1dé
T Vdt



1.2 ORDER AND MOLECULARITY OF A REACTION

We can distinguish elementary reactions based on their molecularity, i.e., the number of reactants
involved. Unimolecular reactions are for example decomposition reactions, like

N,0, — 2NO,
Bimolecular reactions involve two reactants, such as
O+H, >0H+H

Termolecular (trimolecular) reactions are for example encountered when a third collision partner is
involved

A+B+M->AB+M
Reactions with four or more reactions are rare because of the low probability of four species colliding.

It is quite obvious that for an elementary bimolecular reaction, the rate of the reaction must be
proportional to the concentration of both reactants, so that we obtain the rate equation

R = k[A][B]

where k is the rate coefficient.

More generally, one frequently finds that the experimental rate of a reaction is proportional to powers
of the concentrations of different species involved. This allows us to write down an empirical rate
equation, for example

R = k[A]™[B]"

and the powers m and n are the order of the reaction with respect to the species A and B, respectively.
The overall order p of the reation is p = m + n. In general,

R=k1_[cl.n"
i

and

P=Zni
i

The rate coefficient k has the units [concentration] ®"[time].

For elementary reactions, the order of the reaction is equal to the molecularity. However, for complex
reactions, the orders are in general experimentally determined and may even be negative (inhibition) or
fractional (indication of complex reaction). Moreover, the rate equation may not only contain the
concentrations of reactants, but also those of products, intermediates, or other species involved, such as
catalysts, and the rate equation may take a more complex mathematical form.

An example:

H, + Br, - 2HBr



And under different reaction conditions

d[HBr]  k[H,][Br,]2

dt 1+ k'[HBr]

Here, the constants k and k' are phenomenological coefficients and should be referred to as rate
coefficients, while the term rate constant is usually reserved for the coefficients in elementary reactions.
1.3 INTEGRATED REACTION RATE LAWS

By integrating the rate equation, which is an ordinary differential equation, we obtain the concentrations
as a function of time.

1.3.1 ZERO-ORDER REACTIONS
Zero-order reactions can be for example encountered for cases of heterogeneous catalysis on surfaces.

d[A]

R=———=k[A]° =k
T [A]
d[A] = —kdt

[Al¢ t
J d[A] = —k J dt
[Alo to=0

1.3.2 FIRST-ORDER REACTIONS

Examples of first-order reactions are isomerizations, for example, the first-order unimolecular
isomerization of methyl isocyanide

MeNC —» MeCN



1d[A]
=g ar AN
d[A]
T - kA
[A]td[A] t
f ok f dt
[Alo to=0
[A],
lnm —kt
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We can define the decay time T of the reaction
_ 1
Tk
as well as the half-life t1 at which [A], = > [Al,
2 2
. In2
1=—
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1.3.3 SECOND-ORDER REACTIONS
First case: two identical reactants.
2A - product(s)

1d[A]
=3 " AP



[Alo to=0
2l ok
[Ale  [Alo

_ [Alp
[Ale = 1+ 2[A]kt

10t
~— 87
=
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Second case: two different reactants.

A+B - product(s)

R = —=———=k[A][B] = k([Alo — x)([B]o — x)

t

jt dx —k J dt
: ([Alo — x)([Blo — x) B

to=0

We solve the integral on the left by transforming the rational fraction of polynomials using the method
of partial fractions. We set

and find

so that



_ In ([A]o — x¢)[Blo
[A]o - [B]o ([B]o - xt)[A]O
1 [Al¢[Blo
] = kt
[Alo — [Bl, ' [Bl:[Al,
_ [Alo[B]o (et — e[B]Okt)
*t = T[] elAlokt _ [B],elBlokt
_ [Alp[B]o((e!Mlokt — glBlokt) 1ALl _
¥t = T[] eAlokt _ [B],elBlokt [Alo — [Blo [BI:[Al,
1.0 ‘ ‘ ‘ ‘ _ 0.0r
o 0.8\\\\ [A]t -§ -0.5
2 I Ny —-1.0¢
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1.3.4 REACTIONS OF GENERAL ORDER

There are no known reactions of higher than third order. For completeness, we nevertheless develop the
treatment for reactions that are of nth order in one reactant: a A — product(s)

1d[A]

= - = kA"

a dt

1 1 L \_ .
n—1 <[x‘1]’z?'1 - [A]3'1> -

In order to deduce the order of a reaction, one can use a van’t Hoff plot, a log-log plot of the rate
equation, the slope of which gives the order n.

1 dIAl) _ 1 Inak
n<—7>—n n[A] +Ina
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Note that it is also possible to plot the logarithm of the initial rate of disappearance In (— %M asa
t=0

function of the logarithm of the initial concentration In[A],. In this case, several separate experiments
are necessary.

The reaction order can also be determined by measuring reaction half-lives. We have already seen
that for a first-order reaction the half-life ¢1 is independent of the concentration of the reactant.

As derived above, the integrated rate law for higher-order reactions is

1 1
erﬂ‘mw*)zﬂn_”“

[A], and t = t1, we obtain
2

Setting [A]; =

N | =

@t -1

= = Dk ?

Thus, a log-log plot of the half-life t1 versus the initial concentration [A], gives a straight line with
2

slope —(n — 1).

1.4 TEMPERATURE DEPENDENCE OF RATE CONSTANTS: THE ARRHENIUS EQUATION

The Arrhenius equation is an empirical expression for the dependence of a rate constant k(T) on the
absolute temperature T

_EBact
k(T) = Ae™ RT

Here, R is the ideal gas constant. The quantity A is called the pre-exponential factor or frequency factor,
which may be slightly temperature-dependent. For a first-order reaction, A is has units of [s~1], and for
a reaction of order p, its units are [concentration~®~Ds~1].

The activation energy E,. [J mol™] can be thought of as the minimum amount of energy a reactant
must possess to react.
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In fact, using a Boltzmann distribution, we find that the fraction of molecules with an energy larger than
_Eact . . .. .
E . is proportional to e rT . The activation energy is usually positive, but can be negative, for example
if in a complex reaction, a weakly bound reactive intermediate is formed, such as in the recombination
of iodine atoms.
[+M-IM
IM+I->1,+M

The activation energy and prefactor can be obtained from an Arrhenius plot of Ink vs 1/ T.

E
Ink=Ind - =22
n n RT

Slope = — E,, y—intercept=In A

1/RT

If we consider a forward and reverse reaction in equilibrium, we can relate the activation energy to a
reaction enthalpy and the equilibrium constant, for example

kforward
A+B 2 C+D

krevers e
In equilibrium,

ktorward [A] [B] = Kreverse [C] [D]

_AH?
RT

[C] [D] kforward Aforward (Eact, forward—Fact, reverse) Aforward
K., = = = e RT =—=e

e [A] [B] - kreverse B Areverse Areverse



2 COMPLEX REACTIONS

Steinfeld, J. 1., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 2. (Prentice Hall,
1989).

While in the previous chapter, we have mostly looked at simple elementary reactions, we will here
study the kinetics of complex reactions. Our goal is always to find a solution to the (coupled) rate
equations. From the integrated equations, we can then derive insights about the behavior of the reactive
system.

We will also look at methods that frequently allow us to obtain approximate analytical solutions for
complex reactions. Briefly, we will look at some analytical, as well as numerical tools for solving rate
equations.

2.1 REVERSIBLE REACTIONS

In reversible reactions, a forward reaction leads to the formation of products, which can undergo a
reverse reaction to reform the reactants. In the simplest case of a first-order reaction (e.g. cis-trans
isomerization of dichloroehtylene)

ky
A2B
k.

we obtain two linear ODEs

d[A]

T —k;[A] + k4 [B]
d[B]

7 = k1[A] -k 1[B]

We again use the extent of the reaction per unit volume x = [A], — [A] = [B] — [B], to simplify the
description of the problem.

d
d—f = k1([Alo — %) = ka([Blo + x) = —(ky + k_1)x + [k1[A]o — k.1[B,o]

We substitute to simplify the expression

Wt
dr . rTe
Xt t
J dx —Jdt
—kx+c¢
0 0
Xt c
1 dx 1 X~
‘EJ =R |7
0o ¥ Tk k

We note that (xt - %) / (— %) is positive and thus find for the extent of the reaction per unit volume x;



c
xp=—(1—e7kt
=z —eh
We can see that for t — oo, x; approaches an equilibrium value x.q with

o = lim x. = < _ ky[Alo — k4[Blo
97 Sw Tk (ky + k_y)

So that we can write
Xt = Xeq(1 —e7*)

We see that the extent of the reaction asymptotically approaches its equilibrium value xeq. With [A]eq =
[Alo — Xeq and [Bleq = [Blo + Xxeq, We can also write

[A] = [A]eq + xeqe_kt

[B] = [B]eq - xeqe_kt

[Blo=0, k; =10, k_; =02

10

concentration

We can relate the rate constants k; and k_; to the equilibrium constant K. of the reversible reaction.

In fact, we have already done so in section 1.4 for the Arrhenius rate constants of reversible reactions.
In equilibrium, the principle of detailed balance must hold, i.e. the forward and reverse reaction must
occur at the same rate

so that

2.2 CONSECUTIVE REACTIONS

Consecutive reactions are sequential irreversible reactions. The following reaction sequence represents
the simplest case of a first order consecutive reaction with two steps.

ky ks
A->B->C



An example is the radioactive decay of uranium to plutonium

239 239 239
92U = “93Np — “54Pu

d[A]
2 = kalAl

d[C] _
dt

Compound A simply undergoes unimolecular decay.
[A] = [Alge™*

By substituting into the equation for d[B]/dt, we obtain

d[B
% = ky[A]pe ¥t — k,[B]
d[B
% + ky[B] = kq[A]ge*at

This is an inhomogeneous linear ODE, whose solution is the sum of the general solution of the
homogeneous ODE and a particular solution of the inhomogeneous ODE.

For the general solution of the homogeneous ODE, we find

d[B] o
— +la[B] =0

[B] = [Blpoe 2"
where [B]}, ¢ is a free parameter, making this is a general solution.

We guess a particular solution for the inhomogeneous ODE, which we choose to contain the
inhomogeneous term

[B]p = [B]p,oe_klt
In order to determine the constant [B],, o, we subsitute into the inhomogeneous ODE
—kq [B]p,oe_klt + ks [B]p,oe_klt = kq[A]pe k1t

ki[Alo

B =
[ ]p,O kz IR kl

Finally, we add the general homogeneous and the particular inhomogeneous solutions.



e, FalAlo
[B] = [Blnoe "2t + - mehat

With the boundary conditions [B], = [C], = 0, we obtain

ki[Alo

—kqt _ ,—kyt
K, — ks (e e )

[B] =

And with [A] + [B] + [C] = [A],, we find

kle_kzt - kze_klt

[C] = [Alo(1 +

ky, — ky
F_k,:kfo:m - 1 k=t k=100 [CI/IA],
14 — _
[CIIA], <

g g
E [BI/[A], :
g |\, 2 [AVIA],
= o
3

. o [ BIAL

Time ] Time

2.3 PARALLEL REACTIONS

In a parallel reaction, the same species participates in several different simultaneous processes. We will
look at two simple examples.

St
First order decay to different products. A
k\cA C

We can easily see that compound A decays with a first-order rate law.

[A], = [A]ge~(etho*

d[B]; )
Eit] = kg[A]; = kg[A]ge~*BTkot
With [B], = [C], = O,
(Bl = L [Alo(1— e_(kB"'kc)t)
' (kg + k¢) 0
[Cl, = ke [A]o(1 — e~ (ke+kolty
’ (kB + kC) 0

Note that the branching ratio % is independent of time
t



A

o
First order decay to the same product. 7 C
B X,

Quiz: What are the integrate rate laws for this process?

2.4 APPROXIMATE SOLUTIONS TO COMPLEX REACTIONS
2.4.1 STEADY-STATE APPROXIMATION

For many complex reaction networks, analytic solutions cannot be obtained. However, by making
suitable assumptions, one can sometimes find very useful approximate solutions that allow for good
predictions. Such is the case for the steady-state approximation, which can be applied when
intermediates A; are present only in small quantities. In a set of coupled differential equations, the time
derivative of this intermediate will be negligible compared with other time derivatives, so that we can
approximate

Example 1. We will apply this approximation to the first order consecutive reaction with two steps that
we already solved above.

ky ks
A->B->C

We assume that the concentration of the intermediate B under steady-state conditions [B]s is always
small, which will be the case if k; > k1, so that B reacts away faster than it is formed.

d[B
Elt]s = ky[A] — k3 [B]s = 0
k k
[B]s = k_l[A] = k—:[A]oe-klf

[C] = [Alo(1 — e7¥1)

Note that we still find a time dependence for [B]s, even though we assumed % = 0. We can however

verify that [B]s/[A] = % <« 1, which confirms our initial assumption that [B] is only present in small
2

kq
quantities. Product C builds up as if B was not present and we simply had a first order reaction A— C.



Also note that the exact solution that we obtained above without making the steady-state approximation
leads to the same result in the limit k, > k1.

ki[Alo —kqt —kyt ky —kqt
[B]—m(e it —e 2)~k—2[A]o€ 1

~ [A]o(1 — ek1t)

kle_kzt - kze_klt
Cl=1A)p(1
[c] []o< "

[Blo=1[Clo=0, k1 =10, kr =10
107 ~ [Cl/[Alo 1
0.8t

0.6/
04) |
0.2/
00!/

concentration

Example 2. A consecutive reaction with a reversible first step can be described by the following
sequence.

ki k,
A2B-C
k.1

Such behavior is for example encountered in enzyme catalyzed reactions or thermally activated
reactions. The rate equations are

d[A
d|B
% = kl[A] — k_l[B] - kZ[B]
d[C]
¢ = lelB]

While this problem can be solved analytically, we will here apply the steady-state approximation,
assuming that [B] is small, so that

d[B]s
dt

= kq[A] — (k_1 + k3)[B]s = 0

ky

=—1 A
k_1+k2[]

[Bls



We can see that our approximation is only satisfied if k; < k_; + k5, i.e., intermediate B reacts away
much faster than it is formed and therefore has a small concentration. We find the other concentrations
by substitution

d[A] ks -
7 = lalAl+kq[Bs = <_k1 +m) Al = _mw
d[C] __kaks
.  RelBls =g A

We see that the steady-state approximation leads to a simple first order reaction

keff
A->C

kiks;
k_q+ky’

with keff =

Within our assumption that k; < k_q + k,, we can distinguish two limiting cases.

kq
Ifky, > k_q, then k. = k; and the reaction effectively becomes A— C. In this case, the first step of the

kq
sequence, A— B is the bottleneck of the reaction. We call this step rate-limiting, rate-determining, or

rate-controlling.

k;
If instead the second step B— C is rate-limiting, i.e. k_; > k,, then

ki k
kefr = —kl 2 = Kk,
-1

with K = —. In this case, the second step is so slow that A and B are in a quasi-equilibrium
-1

kq
A2B
k.1
with equilibrium constant K = % = kk—l This quasi-equilibrium is called pre-equilibrium.
-1

For the rate equation of C we find




ky
A - B rate-limiting, k, > k_4

ks

B—C rate-limiting, k_; > k,

ki=02,k_1 =19, k,=0.1

ki=02,k_;=01, k, =19

1.0 ‘ R —— 1.0¢

0.8¢ =
g g
§ 06’ steady-state concentrations g

=

§ 04F without approximation 8
g =)
o ]
© 02} <

0.0t

2.4.2 PSEUDO-FIRST-ORDER METHOD

100

The pseudo-first-order method is an experimental technique for simplifying the analysis of complex
reactions involving several steps. It consists of flooding a reaction, i.e. supplying all reactants in excess
except one, so that the reaction becomes pseudo-first-order in this one reactant.

Consider for example the competing reactions

kq
A, + A, > products

ka
A, + Az —>products

with the second-order rate equations

d[A

[dj] = —l1[Ad][A;]
d[A

Elj] = —ks[As][As]

If we supply [A4] in large excess

[A1] >» [Az] and [A{] » [As]

the concentration of [A;] will remain almost constant over the course of the reaction

[A,] = const.

so that




We can see that the reactions become pseudo-first-order, making the complex reaction sequence simpler
to analyze.

2.5 EXACT ANALYTICAL SOLUTION METHODS
2.5.1 MATRIX METHOD: LINEAR ODES

The matrix or determinant method is suitable for systems of linear ODEs, i.e. coupled differential

equations of the type
d[A]
P Z kij[Af]
J

which we can rewrite as
a, = Z kl]a]
J

Note that no terms a;* with n > 1 appear, nor any cross terms a;ay.

As an example, we will look again at the first order consecutive reaction with two steps

ki ks
A1 —)AZ —)A3
We can write the coupled differential equations in matrix form as follows

dl _kl O 0 al
Ci3 0 kz 0 as

a=Ma

or

The idea of the matrix method is that this system of equations should be easier to solve in a different
basis in which the matrix M containing the rate coefficients is diagonal. In that case, we obtain three
independent first order rate equations that we know how to solve.
The diagonal matrix A, is related to the matrix M through
MX = XA

X MxX=A
where X is a matrix, whose columns correspond to the eigenvectors x; of M, and X1 is the inverse of
X. The diagonal elements of the matrix A are corresponding eigenvalues A; of M. After transformation,
we obtain

X la=AX1la

With X~ 1a = a’, this becomes



a' = Ad’

Since A is diagonal, we end up with three independent first order equations
al = Aia;

with solutions

Mt

,_
a; = cie

or

so that

c Mt

a=X| cyeret

cehat

where the variables c¢; are constants to be determined from the initial conditions.

We begin by finding the eigenvalues A; of M.

IM — AI| =0
ki —ka=24 0| =(ki =Dk = DD =0
0 k2 _A

We obtain /11 = _klﬂ /12 = _kz, /13 = 0.

Next, we find the corresponding eigenvectors.

0 0 0 X1,1
(kl k1 - k2 O ><x1,2> = 0
0 k, +ky/ \X1,3

If we choose X1,3 = 1, we find X1,2 = _kl/k2> and X1,1 = (k1 - kz)/kz, so that

X11 (k1 — k2)/k,
X1,3 1

For /11 = _k1

Similarly, we obtain



We obtain the matrix equation
At

a; (kl - kz)/kz 0 0 ci1€e
a= <a2> = ( _kl/kz -1 0) Czekzt

as 1 1 1/ \gyehet

In order to find the coefficients c;, we impose the boundary condition a(t = 0) = < 0 >, so that
aio (k1 —ky)/ky, 0 0\ /€1
< 0 > = _kl/kz -1 0 C2
0 1 1 1/ \6

k,
ey — ke, 10

We obtain

C1=

kK
Cz—_k_2C1—k2_k1a1,0

C3 = —C —C =09

This finally yields the time dependent concentrations a

a (ky —ky)Jk, 0 0\ [cie™t
a= aZ = _kl/kz _1 0 Czekzt
as 1 1 1/ \gyerst
k, .
a, e Kt
((kl —kz)/k; O 0) ky —k, M°
=\ —k/k, -1 0| Kk e
————a e 2
1 1 UV\ky—ky *°
Qa0
al'oe_klt
a0 kl (e_klt _e_kzt)
Tky —ky
1
031 + ——— (ke ket — ekt }
oL+ g G e7hat)

Note that this agrees with the solution we found above.

2.5.2 LAPLACE METHOD: LINEAR ODES

(see the course “Numerical Methods”)



2.6 NUMERICAL SOLUTION METHODS
2.6.1 STOCHASTIC METHOD

The mathematical approach we have used so far for describing the kinetics of a system by a set of
coupled differential equations is deterministic, i.e., it allows us to predict the concentration of different
species at any given point in time. However, we have not provided any justification for such an
approach, other than that it seems to agree with experiments.

Here, we will put this procedure on a more solid foundation by looking at the reactions of individual
molecules — an approach similar to that used in Statistical Thermodynamics. Because of the quantum
nature of molecules and our lack of knowledge of the initial conditions of a molecule, we can regard its
reaction as a stochastic process. We will find that in the limit of large numbers of molecules, a stochastic
description of the reaction kinetics will frequently yield the same results as a deterministic description,
if we consider ensemble averages. This is essentially a result of the law of large number.

However, a stochastic approach also allows us to describe statistical fluctuations, i.e. deviations from
the mean. If these fluctuations, which we can quantify with the standard deviation, are small compared
to the average value, a deterministic description is justified. However, if large fluctuations are present,
so that the standard deviation is comparable to the average value, a deterministic approach may not
yield a realistic description. Such is the case if strong correlations exist in the system. Fluctuations also
dominate the behavior of a system if only a few reactants are present, such as a small number of enzymes
in a cell.

Finally, the stochastic approach also offers a straightforward numerical recipe to solve complex
differential equations, providing an alternative if numerical integration fails.

As an example, we will consider the irreversible reaction
A-B

and assume that at t = 0, ny A molecules and no B molecules are present. At the core of the stochastic
approach is the probability that one single A molecule will react to B within the next time period At:

— —kAt
Preaction = 1-e b~ kAt

where k is a constant and where we have also assumed that At is sufficiently small. For n molecules
of A, the probability W, ,_; (At) that any one of them will react within the next time period At is

Wy n-1(At) = knAt + O(At)
where the term O(At) describes the probability that more than one molecule will react. If we assume
that At is small, this term will be negligible. Correspondingly, the probability W, ,(At) that no A
molecule reacts is

Wyn(At) =1 = Wy 4 (A8) = 1 — (knAt + O(AL))

We furthermore denote the probability of finding n molecules of A at time t as P, (t). For the probability
P, (t + At) of finding n molecules at time t + At, we can then derive the expression

Pn(t + At) = Pn+1(t)Wn+1,n (At) + B, (t)Wn,n (At)

which is a sum of the probability that n + 1 molecules were present at time t, of which one reacted,
and the probability that only n molecules were present at time t, of which none reacted. In essence, this



expression contains a sum over all the possible paths that lead to n molecules at time ¢ + At. Upon
substitution,

B,(t +At) = k(n+ 1DAtP,,,(t) + (1 — knAt)B,(t) + O(At)
rearrangement gives

P, (t + At) — B,(t)
At

=k(n+ 1)P,.,(t) — knP,(t) + O(At)
which for At - 0 becomes

dP,
pra k(n + 1Py () — knBy(8)

This is called the master equation which describes the coupled rate equations for all possible states of

the system. We will now try to find analytical solutions for all probabilities P,, which will then allow
us to make a connection to the deterministic description of the reaction.

The probability P, can be easily found, since

Pno+1(t) =0
so that
dP,
d’tl° = —kngP,, (t)
Attimet =0
Pno(t =0)=1

and we obtain
Pno @ = eknot
For the probability P, _1(t),n =ng — 1 and

dPnO—l _

knge kot — k(ny — 1)P, _1(t)
dt 0
To solve this inhomogeneous linear ODE, we first find a general solution of the homogeneous equation

Pn L= Ce—k(no—l)t

o

Instead of guessing a particular solution of the inhomogeneous equation, as we have done above, we
will here apply the variation of constants. We find the general solution of the inhomogeneous equation
by setting

Pno—l = C(t)e_k(no_l)t

which upon substitution into the inhomogeneous equation gives



(D)e~*Mmo=DE = p g=knot
¢(t) = knge™*t
c(t) = —np(e ¥ — 1) + ¢(0)
Since P,,-1(0) = 0, we can conclude that ¢(0) = 0, so that
Pa.—1 = ng(1 — e~¥)e~k(mo=1t

We can rewrite this equation as follows

Ppy-1 = (nong 1) (e_kt)no_l(l - e_kt)no_(no_l)

n
This suggests the following interpretation. The term (no E 1) reflects the number of ways one can pick

the ny — 1 unreacted molecules out of the total of ny. The probability that one molecule has not reacted
is e 7% 5o that the term (e'kt)no_1 is the probability that ng — 1 molecules have not done so. Finally,

the term (1 - e"‘t)1 is the probability for one molecule to have reacted.
Indeed, one can show that in general,
Ng _ n _ no—n
b= (30) " (= ey

which we can understand in a similar way. The probabilities P, correspond in fact to a binomial
distribution

o= (00) () (1 =) = (T0) pr @ —pyrom

with p = et the probability that a molecule has not reacted. In order to compare this distribution to
the integrated rate equation as obtained from the deterministic approach, we calculate the mean number
of molecules (n(t)) as well as the associated standard deviation o (t).

n(e) = D b= ) n () —pye
n=0 n=0

With
Ng\ _ no! _ ng(ne—1! ng—1
n(n)_n(no—n)!n!_(no—n)!(n—l)!_no(n—l)
we find
ng No
-1 _ -1 _ _
(n(t)) =ng 2 (7;"_ 1 )p"(l —p)rTt = nopz: (T;{’_ 1 )p” (A —p)ro
n=1 n=1

Notice that the sum now runs fromn = 1 tonyg. Withm=n—1andmy=ny—1



(n(t)) = nop 2 (Tn") p™ (1 —p)TeT™
m=0

Since the sum over the entire distribution must equal one, we finally obtain

(n(t)) = ngp = noe *t

which is exactly the deterministic result. For the variance o (t)?2, we find with a little more effort

o) = Y (= ()PP = ) n2By— (n)? = noe K (1 - ™)
n=0 n=0

The ratio of the standard deviation and the average yields

o(t) ekt —1

@) fmo

showing that for large numbers of molecules n,, the fluctuations will be small compared with the
average value, in which case a deterministic approach is justified.

While we have here looked at the example of a simple reaction A — B, one can perform a similar
analysis for more complex reactions. One always obtains the deterministic solution from the ensemble
average. Whether such a deterministic description is justified or if instead fluctuations are important,
can be decided based on the ratio of the standard deviation and the average value.

The stochastic approach also provides an alternative means of solving rate equations without having to
resort to numerical integration. As an example, we will consider the reaction

The algorithm we will discuss here is based on generating random numbers in order to decide whether
at a given point in time a molecule of A reacts to B or vice versa. In order to obtain an efficient algorithm,
we divide the problem in two steps. First, we randomly pick a time 7 at which the next reaction of either
a molecule A or a molecule B will occur, while taking into account the probability distribution of
reaction times P (7). Then we randomly decide which of the two reactions takes place, according to the
probabilities P (i) for the reaction i to occur.

According to the discussion above, the probability p,g reaction that no reaction of either the n; A
molecules or the n, B molecules has occurred after time 7 is

— ,—(kqnqi+kyny)tT
Pno reaction = € (kany+kznz)

Consequently, the probability P(t)dt for the reaction to occur in the time interval [z, T + dt] must be
proportional to the time derivative of the probability py, reaction-

d .
P(t)dt = —%dt = (kyny + kpny)e~Kimatkan)Tqr — ge=atqg



with a = }}; k;n;. We can easily verify that the probability distribution P(r) is normalized, i.e.
foooP(r)dT =1.

We use a random number generator to obtain a first random number r; in the interval [0, 1] that will
determine the reaction time 7, which we obtain from the cumulative probability for the reaction time is

T

Paum () = JP(‘L’)dT =1—earT
0

The random number 7y replaces Py (), so that
1 1

=-In—
Tata-n)

which produces the same result as

1 1
T=—In—
a n

We then generate a second random number 1, to decide which reaction i occurred at time 7. The
probability P (i) that reaction i occurs if any reaction occurs is then simply

kin; kin; kin;
Yiking king +kony, a

P@) =

so that

. {1 ifr, <kni/a
T2 ifr, > kin,/a

We then increment the reaction time variable by T and repeat the previous steps.

120 12,000
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2.6.2 NUMERICAL INTEGRATION

(see the course “Numerical Methods”)



3 CATALYSIS AND POLYMERIZATION

Steinfeld, J. 1., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 5. (Prentice Hall,
1989).

Atkins, P. & de Paula, J. Atkins’ Physical Chemistry Ch. 20. (Oxford University Press, 2014).

3.1 CATALYSIS AND EQUILIBRIUM

A catalyst is a chemical substance that increases the rate of a reaction without itself being consumed in
the reaction. Formally, a reaction

A-B
will proceed faster in the presence of a catalyst C
A+C->B+C

The catalyst achieves this by lowering the activation energy of the reaction, without however changing
the Free Energy of the reaction and therefore its equilibrium constant.

Uncatalyzed

By (forward) path

AH® (reaction)

Reactants Transition state Products

for which a second catalyzed reaction path exists

ki
A+C2B+C
k',

According to the principle of detailed balance, we find at equilibrium

K [BlalC) Bl Ky
Kea = 1 T Al C] ~ [leg ko, Rea




We can conclude that the catalysts speeds both the forward and the reverse reaction up by the same
factor.

3.2 ENZYMATIC CATALYSIS AND THE MICHAELIS-MENTEN MECHANISM

As an example, we will here look at enzymatically catalyzed reactions. Such reactions have in common
that they proceed through an intermediate in which the substrate docks to the enzyme.

The figure below shows snapshots of such a process, illustrated with a space-filling model. A hexose
docks to the active site of a hexokinase, which then catalyzes its phosphorylation. Subsequently, the
reaction product is released.

In general, the reaction between enzyme E and substrate S
E+S2ES2EZ2EP2E+P

will proceed through a number of intermediates, such as an enzyme-substrate complex (ES), an enzyme-
product complex (EP), and an activated complex (EZ). The Michaelis-Menten mechanism simplifies
this reaction sequence, which leads to a simple description of the kinetics that is useful for extracting
various kinetic parameters.

ki k,
E+S2ES—E+P
k4

The assumptions are that
1) the reaction proceeds in only two steps,
2) there is no reverse reaction from the product(s) to the substrate (or we restrict our measurements
to the initial stages of the reaction where [P] is small and the backreaction can be neglected).

Furthermore, in order to solve the resulting differential equations, we assume that
3) the steady-state approximation can be applied to the enzyme-substrate complex ES,
4) the enzyme concentration is much smaller than that of the substrate, [E] « [S].

d[ES]s
dt

= kq[E][S] = (k-1 + k2)[ES]s = 0

With [E], = [E] + [ES]s, we obtain

Kk [E]o[S]
[ES]s = ki[S] + k_1 + k;



Since [ES] = [E] < [S], we can approximate [S], = [S] + [P], so that

_dls]_d[p] _ kuky[El[s]
v= e ar B S R, v

which we can rewrite to obtain the Michaelis-Menten Equation:

_ kz [E]O _ VUmax

B k_y+k, K
1+—=-2 1+7%
ky[S] [S]

with the maximum rate v,,,, = ky[E], and the Michaelis constant Ky, = (k_q + k3) /k;.

We can distinguish two limiting cases. For [S] < Ky,

V= VUpax = Ka [E]O

so that the reaction becomes zero-order in S. Under such conditions, the enzyme is essentially saturated
due to the abundance of the substrate, and all the enzyme is tied up in the enzyme-substrate complex,
ie. [ES]S = [E]O

A plot of the rate v versus the substrate concentration [S] is called Michaelis-Menten Plot, from which
one can obtain the maximum rate v, as well as the Michaelis constant Ky,

v
max

o

Ky [S]1 (moy)

1

5 can afford better precision:

The Lineweaver-Burk Plot of % versus

v B vmax [S] vmax

1 Ky 1 1




—>

17151 (/mol)
Another alternative is the Eadie-Hofstee Plot:

v_ﬁ_v
[Elo[S]  Ku KwmlElo

=

4
[E], [S]

V/IE 1,

33 INHIBITION OF ENZYMATIC REACTIONS

An inhibitor [ decreases the rate of an enzyme catalyzed reaction, either by binding the enzyme E and
thus leaving less free enzyme that can catalyze the reaction, or by binding to the enzyme-substrate
complex ES and preventing the product formation from proceeding.

ki k,
E+S 2 ES » E+P
k4

El ESI

In order to find an expression for the rate of product formation in the presence of an inhibitor, we apply
the steady-state-approximation to the enzyme-substrate complex ES as above, so that

d[s] d[P]

=g = ar - felBsks



ky
Moreover, we also assume that the reaction ES — E + P is slow, so that all other species exist in a

pre-equilibrium. In order to obtain an expression for [ES]s, we write down the mass balance for the
enzyme, as we did above:

[E]lo = [E] + [EI] + [ES]s + [ESI]

Under pre-equilibrium conditions, we can define the dissociation constants of the different complexes

kg [ENS] (BN [ES]]
R o I B 1T R R Y
so that we can substitute
ES]|[I
[E]o = [E] + [K]E[I] + [ES] + [KE]S[I] = [E]a + [ES]a’
with
L
" T K

We also substitute [E],

[E], = [ES] (a' + a@)
[S]
and finally obtain
k2 [E]O VUmax
v = ka[ES] Kis Ks

a’+am a’+am

This equation resembles the Michaelis-Menten equation

vmax

K,
1+7%
[S]

Umm =

which we obtain when we assume that no inhibition occurs, i.e., the dissociation constants for the
inhibitor become infinite, so that

lim a=1; Ilm o =1

Kgj—oo Kgsi—©
and
. vmax
lim v=
Kg—, 1+ Kgs
Kggi—0 [S]

By comparison,



Cktk, k_y
M — kl ~ AES — kl

which is the case, if k_; > k,. This is the condition for the existence of a pre-equilibrium as we
assumed above.

We can distinguish three types of inhibition. Competitive inhibition occurs when the inhibitor binds
to the active site of the enzyme, thus competing with the substrate

KES k2
E+S 2 ES > E+P

T Kg;
El

If no binding of the inhibitor to the enzyme-substrate complex ES occurs (@’ = 1 and a > 1), so that

vm ax

K
1+ ass
[S]

v =

We can see that at low concentrations of the substrate [S], the inhibitor slows down the reaction

UmaX
~ ——|S
v aKES[ ]

while in the limit of [S] — oo, the maximum rate remains unchanged v = V.

Uncompetitive inhibition occurs if the inhibitor prevents the enzyme-substrate complex ES from
reacting to the products by binding to a site other than the active site.

ki Kk
E+S @ ES > E+P
ki

ESI

Without binding at the active site (¢ = 1 and &’ > 1), so that

vm ax

a’+®

[S]

v =

We can see that at low concentrations of the substrate [S], the inhibitor leaves the reaction rate
unchanged

while in the limit of [S] — oo, the maximum rate is lowered v = v, /a’.



Finally, for mixed inhibition (noncompetitive inhibition), the inhibitor binds to both the enzyme E as
well as the enzyme-substrate complex ES at a site other than the active site, so thata > 1and a’ > 1
and

vm ax

v =
KES
a +a=
[S]

In all cases, the efficiency of the inhibitor can be obtained through comparison of results from
measurements in the presence and absence of the inhibitor.

34 AUTOCATALYSIS

Autocatalysis occurs when the product of a reaction appears as the reactant of either the same reaction
or a coupled reaction. In the simplest case

k
A+B- 2B

dt  dt

dx

2t = k([Alo —x)(x + [Bo)

and

J( —x)(x+[]) OJ’““

which we integrate with the method of partial fractions

OJ( —x)(x+[]) oJlr[BoU(A —x) J(x+ 0)}

0
| [AloCx + [Bo

[Blo([A]o — x)

=kt

[A]o + [B]o

With [B]; = [B], + x, we obtain




Concentration

The time dependence of [B] shows a typical S curve: In the induction period, the rate of the reaction
increases steadily, before it reaches a maximum at the inflection point at time t*, after which the reaction
rate slows until it drops to zero at long times. Such behavior is for example associated with the growth
of a population, such as bacteria (B) with a limited food supply (A). Note that for an initial concentration
[B]o = 0, the reaction does not proceed.

35 POLYMERIZATION

We distinguish two cases of polymerization reactions.

In stepwise polymerization, any two monomers may react at any time or add to an already growing
chain. An example is the polycondensation reaction of a hydroxyacid HO—-R—COOH to form polyester:

HO-R-COOH + HO-R-COOH - HO-R-COO-R-COOH + H,0
The rate equation for the consumption of acid groups is

dIA] = d[COOH] = k[COOH][OH] = k[A]?
——= = ————— = k[COOH][OH] = k[A]

where we have used that [COOH] = [OH] = [A]. As we have derived above,

_ [Alo
[A] = 1+ kt[A],

The fraction p of monomers that have reacted is

[Alo — [A] _ kt[A],
[Al, 1+ kt[A]

p:

and the degree of polymerization, i.e., the average chain length (N) is

A, 1
(N)—W—m—1+kt[A]0

We see that the average chain length increases linearly with time.

Chain polymerizations proceed by adding monomers to the end of the growing polymer chain. As an
example, we will look at radical polymerizations such as that of ethylene to form polyethylene:

R—CHchz -+ CHchz e R—CH2CH2CH2CH2 "



The reaction proceeds in three distinct reaction steps. During initiation, radicals are formed which
subsequently start the chain reaction. In the example below, an initiator In is thermally decomposed to
generate two radicals R -. Other radical initiators are activated photochemically or through oxidation.

©><ogo><© AL, ©><o'

In general,

= Zkl [IIl]

Subsequently, the radical reacts with a monomer M to give a radical M; -
fast
R-+M - M;-
During propagation, further monomers M are added, resulting in continuous chain growth:

ky
M- +Mo M,

ky
M, +M— M;-

To simplify matters we will assume that the monomer addition steps all proceed with the same rate
constant k,, independent of chain length.

Chain termination occurs when two radical chains combine:

ke
M, - +M,, - > M4, (mutual termination)

Here, we assume again that the rate is independent of the chain length. Other processes we will not
consider in our simple treatment include the following:

M, +M,, - M, + M, (disproportionation)
M, - +M - M, + M- (chain transfer)

In order to obtain a solution for the rate of polymer growth v,,,



we apply the steady-state approximation to the concentration of all radical chains of any length [M - ],
which we can assume to be small.

d[M-]
dt

= 2fk;[In] — 2k,[M ]2 =0

Here, we assume that the initiator radicals react instantaneously to form chain radicals with an efficiency
f, which leads to the first term of the rate equation. The second term contains the rate of mutual
termination. We find

so that

We can employ this expression to calculate the kinetic chain length A

monomer units consumed

" activated centers produced

We can estimate this ratio by taking the ratio of the corresponding rates. Moreover, under steady-state
conditions, the rate of activated center production will equal the rate of chain termination:

rate of monomer consumption  k, M-][M]  k,[M-][M]
" rate of activated center production  2fk;[In] T 2k[M 2

— kp [M] — kp - [In] —%[M]

2(fkik.)2

We obtain an estimate of the degree of polymerization (N) by assuming that all chains are terminated
by mutual termination, so that

(N = 20 = —2 1) 5[]
(Fhiko)?

We can see that a smaller initiator concentration will lead to a polymer with higher molecular weight.



4 THE KINETIC THEORY OF GASES

McQuarrie, D. A. & Simon, J. D. Physical Chemistry: A Molecular Approach Ch. 27. (University
Science Books, 1997).

In the previous chapters of the course, we have covered various topics of macroscopic kinetics. We
have studied a range of kinetic systems of varying complexity and have predicted their evolution based
on the knowledge of the coupled rate equations that govern them as well as the rate constants involved.
While we have discussed how to measure these rate constants, we have not addressed the question what
determines the speed of a chemical reaction. If we want to predict rate constants from first principles,
we need to develop a microscopic picture of chemical reactions, which we will do in the remainder of
this course. We will begin with simple reactions in the gas phase that occur as gas molecules collide
with each other. In contrast, the description of reactions in the condensed phase is vastly more complex
due to the presence of solvent molecules that surround the reactants. Once we have developed a more
detailed picture of gas-phase reactions, we can then transfer these concepts to more complicated
reactions in solution.

Before we consider reactive collisions of gas molecules, we first introduce a simple model of gases, the
kinetic theory of gases, which quantitatively describes the behavior of an ideal gas. At sufficiently low
pressure, all gases, independently of their nature, behave as ideal gases. The kinetic gas theory describes
such an ideal gas as an ensemble of molecules that are in constant motion. At low pressure, the average
distance between two molecules is much larger than the molecular diameter, so that one can make the
simplifying assumption that the gas molecules do not interact. Therefore, they do not possess any form
of potential energy, but only kinetic energy, hence the name kinetic theory of gases. Collisions of two
molecules are assumed to be collisions of hard spheres. They occur elastically, i.e. the total translational
energy of molecules does not change during the collision; or in other words, no internal degrees of
freedom (vibrations and rotations) are excited during the collision.

4.1 AVERAGE TRANSLATIONAL KINETIC ENERGY

Using these assumptions, we can calculate the pressure of an ideal gas and derive the ideal gas law. We
consider a molecule of mass m with velocity components u; ., U;y, Uy, that moves in a container that
for simplicity, we assume to be rectangular with sides a, b, c¢. Generalizing our approach to containers
of arbitrary shape is straightforward.

When the molecule strikes the right wall, it exerts a force upon this wall that arises from the change of
the x-component of its momentum mu4,. If we assume that the collision is elastic, the momentum
reverses sign, so that the absolute change in momentum becomes

A(muyy) = |-muyy — mugy| = 2muy,

After the molecule bounces off the left wall, it will strike the right wall again after a roundtrip time of
At =2 ui The momentum per unit time imparted to the right wall therefore becomes
1x
A(muy,) _ muf,
At a

=F



According to Newton’s second law this is equal to the force the molecule exerts on the right wall F;.
We obtain the associated pressure P; by dividing by the surface area of the right wall bc

_F muf,  mui,

P, = =
17 be abc V

with V = abc the volume of the container. We sum over all molecules to obtain the total pressure

N

N Nmuz
_ _ jx _ M 2
P=2B= ) =T )

j=1 ]:1 ]:1

With 27:1 ujzx = N(u2), this leads to
PV = Nm(u?)
Because the gas is isotropic,
(uz) = (u3) = (u)
And since u? = uZ + uj + uz, it follows that
(u?) = (ug) + (u) + (u)

so that

() =3 )
and

1
PV = §Nm(u2)

From statistical thermodynamics, we know that the average translational energy per molecule of an
ideal gas is

Emu?y = Smzy = k1
smu’) = om{u®) =5 kp

with the Boltzmann constant kp. By substituting, we can thus derive the ideal gas law.
PV = NkgT = RnT

We can also derive an expression for the root-mean-square speed of a gas molecule

3RT
Urms = (u2> = 7

Note that because in general, (u?) # (u)?, the root-mean-square speed is generally different from the
average speed, U,ms # (u). Nevertheless, at room temperature the difference is typically below 10%.



Gas (u)/m-s™! u, /m-s™

NH, 609 661
co, 379 411
He 1260 1360
H, 1770 1920
CH, 627 681
N, 475 515
0, 444 482
SF 208 226

Quiz: Use MATLAB to plot u,,5(T) for Hz and No.

4.2 THE MAXWELL-BOLTZMANN DISTRIBUTION

The speed distribution of a gas is described by the Maxwell-Boltzmann distribution, which we will
derive here, following first the somewhat heuristic treatment of Maxwell, and then the more rigorous
derivation of Boltzmann.

We are seeking an expression for the distribution function h(ux, Uy, uz), which describes the
probability h(ux, Uy, uz)duxduyduz that a molecule’s velocity components fall between u, and u,, +
duy; u, and u,, + du,; as well as u, and u, + du,. We note that

oo

J h(ux,uy,uz)duxduyduz =1

— 00

Maxwell uses the assumption that the distributions of the different velocity components uy, u,,, u, are

statistically independent of each other. This assumption, which turns out to be correct, allows us to write
the speed distribution function as a product of the distributions of the individual components

h(ux: uyvuz) = f(ux)f(uy)f(uz)
The distributions for the x-, y-, and z-components must be identical because the gas is isotropic. For the
same reason, the distribution should only depend on the speed, i.e. the magnitude of the velocity u, not
its direction, where

u? = uf +uj + ug

We therefore introduce a new distribution function h(w) that only depends on u and that we will use in
the following. We take the logarithm of h and differentiate with respect to one velocity component

Inh =Inf(u,) +Inf(u,)+Inf(u,)

(6 In h) _ dlIn f(u,)

du, y iz du,
We transform the partial derivate and introduce h(u)
(E)lnh) _dlnfl(au) _uydInh
du, ity du \odu, upu, U du



Quiz: Using u? = u2 + uy + u2, show that (au ) =2
X

o
Uy, Uz

Rearrangement gives

dinh _dinf(u,) dinf(u,) dlnf(u,)
udu  w.du, Uy du, T u,du,

Since uy, u,, and u, are independent of each other, this expression must be equal to a constant, which
we choose to be —2y, so that

dinf(u) .
W_ =2y,j=x,9,2

and upon integration

f() = 4™

Note that y must be positive in order for the probability distribution f (uj) to be normalizable. Indeed,
we can find A by setting

Jf(uj)duj =A J e_yulz'duj =1

and obtain'

fy) = J%e‘”z

We determine y by calculating the average value of u]-z, which we found in section 4.1 to be (ujz) =

RT /M, to that?
2y — 2 _ | 2 ,—yuj — 1 — R
(u]-) J u; f(uj)duj / J uje Yy du; > M

which gives us the probability distribution for a single velocity component

ZkBT

f() = 2nRT 27'ckB

Quiz: Use MATLAB to plot f (uj) for H, and N; at different temperatures.

lf —ax dx =

Py

2 (*® 2,-ax? —
[ x%e™ ™ dx = —7
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Quiz: Determine the average value of the x-component of the velocity, (1;), the average kinetic energy
of the x-component of the velocity, (Ej, ), as well as the average total kinetic energy, (Exin totar)-

Following Boltzmann’s approach, we can arrive at the same result for the probability distribution for
a single velocity component by using the Boltzmann distribution, a result of statistical thermodynamics.
For a system at thermal equilibrium, the Boltzmann distribution describes the probability P; of finding
the system in a state of energy E;

_Ei _Ei
P = =
_2i Q
Zje kgT

E;
—
where Q = }.;e kBT is the partition function, and the sum is over all energy levels. The translational

. .1 .
energy for one velocity component of a gas molecule is > mujz, which leads to

1 2
2muy;

() = Ae” FaT
which, after normalization, leads to the velocity distribution derived above.

In order to derive the speed distribution of an ideal gas h(w) (i.e. the distribution of the magnitude of
the velocity), we write down the three-dimensional velocity distribution function h(ux, Uy, uz)

h(ux, Uy, uz)duxduyduz = f(ux)f(uy)f(uz)duxduyduz
3 m(ui+ud+uf)

m 2 —

and perform a coordinate transformation from Cartesian to polar coordinates with
uz 4+ ud +uz = u?

d(uy, uy,uz)

d = u?si
3w b, 0) udgpdl = u” sin 6 dudpdo

du,du,du, =

so that we obtain



3
5 mu?

)2 w2e ZKaT qudd sin 6 d6

1 (u, b, 0)dudpdd = ( kT

We eliminate the angular part through integration over ¢ and 6 (we integrate over all directions in

which the molecule can travel)

21 T

3
F(uwdu = ( m )Euze_zrr’l‘Il;TduJ d¢Jsin9d9—4rr( m )
~ \2mkgT B 2mkgT
0 0

muz

u?e 2ksTdy

N W

and thus obtain the Maxwell-Boltzmann distribution.

_mu?
u?e 2ksTdy

N| W

Fw)du = 4r (——
waew = "(anBT>

Quiz: Use MATLAB to plot F(u) for H, and N, at different temperatures. Compare with the escape
velocity from earth.
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Quiz: Derive the mean velocity (u) and the most probable velocity u*.

Quiz: Derive the kinetic energy distribution f(€)de, where ¢ is the kinetic energy of a molecule.

Quiz: Derive the mean energy (&) and the most probable energy €*.

4.3 MEASUREMENTS OF THE VELOCITY DISTRIBUTION

As you have learnt in your spectroscopy course, the velocity distribution of the molecules in a gaseous
sample leads to so-called Doppler broadening of the spectral transitions of the gas molecules. Measuring
this broadening can therefore be used to infer the temperature of the gas. Due to the Doppler effect, a
molecule moving towards the observer with a velocity u, emits or absorbs radiation at a frequency v
that is shifted with respect the transition frequency vq of the stationary molecule

v=v0(1+%)

By substituting into the one-dimensional velocity distribution, we obtain the Doppler broadened line

shape

_mc?(v—vy)?
I(v) e 2voksT



which is a gaussian with variance

vikgT

mc?

2=

which is proportional to the temperature.

The velocity distribution of a gas can also be measured with a setup as sketched below. In a vacuum
chamber, a gas source emits a fine jet of gas molecules, which is collimated with apertures and passes
through a velocity selector consisting of slits cut into series of spinning discs. The slit in each disc is
displaced from that on the previous disc by a fixed angle, so that a given rotation speed will only allow
molecules of one specific velocity to pass. A measurement of the gas flux exiting the discs as a function
of the rotation frequency yields the velocity distribution.

e QC‘CCIOT
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slits Selecto
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5 COLLISIONS

McQuarrie, D. A. & Simon, J. D. Physical Chemistry: A Molecular Approach Ch. 27. (University
Science Books, 1997).

In order for a chemical reaction between to gaseous molecules to occur, they have to enter into spatial
proximity — in other words they have to collide. Similarly, gas surface reactions require a collision
between a gas molecule and the surface. In this chapter, we will therefore study collisions. We will
build on the concepts from the kinetic theory of gases that we have developed in the previous chapter
and look at different models of reactive collisions that differ in the complexity of how they treat the
intermolecular interaction.

5.1 COLLISIONS WITH A WALL

In the following, we will derive the collision flux z.,; of gas molecules striking a surface, i.e. the
number of molecules impinging on the surface per unit time and unit area. This is an important
parameter for understanding gas-surface reactions that will also be useful in describing effusive beams.
For a given gas density p, we use the Maxwell-Boltzmann distribution F(u) to calculate the density of
molecules p, g 4 moving at a given speed u and with polar angles 6 and ¢ of the velocity vector.

Approaching

z / molecules

sin 8 dOd¢

Pugp = PFw)du yp=

From the geometry sketched above, we can deduce that in a time interval At, all molecules with these
parameters (u, 8, ¢) will strike a circular area A if they are contained within the volume of an oblique
cylinder of volume V = Au,At = Au cos 6 At. The number of molecules Ny g 4 striking the area A
during the time interval At is

sin 8 dOd¢

Nygp = Vpuee = Aucos6 Atp - F(u)du =

We obtain the flux zc.y; 49,4, i-€. the number of molecules with parameters (u, 8, ¢) striking the surface
per unit time and unit area by dividing by AAt.

N,
Zeoll,6,p = X’Te’f = :;nuF(u)du cos 8 sin 6 dod¢
Note that Zepy,0, < U3, since uF(u) oc u. The distributions F(u) and uF(u) are plotted below,

showing that the maximum of uF (u) is shifted to higher values of u. This reflects the fact that faster
molecules collide more frequently with the surface than slow ones.
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Finally, we obtain the total flux z.y; by integrating over all molecular speeds u as well as all angles 6
and ¢.> Note that only molecules with 0 < 8 < m/2 will hit the surface.

0 /2 2
P . p kgT
Zeoll = 4~ uF(u)du | cos@sin@dh | dp = . (u) = o—p
0 0 0

Quiz: Find a simplified derivation of the same result by using the one-dimensional velocity distribution.

Quiz: Calculate the collision flux of nitrogen at 300 K and 1 bar.

5.2 EFFUSION
Atkins, P. & de Paula, J. Atkins’ Physical Chemistry Ch. 19A. (Oxford University Press, 2014).

Effusion occurs when gas escapes through a small hole into vacuum. According to Graham’s law, the

rate of effusion Keffysion 1S proportional to /1/M, where M is the molar mass of the gas. We can easily
verify this empirical law from the above. For a hole with surface area A, we find

kyT 1
ketfusion = ZeonA = %,DA (¢ %

This derivation assumes that the presence of the hole does not change the velocity distribution of the
gas molecules, which is the condition for effusive flow to occur. This condition will be fulfilled if no
collisions between gas molecules occur inside the hole, so that the velocity distribution of the molecules
passing through the hole is not altered by the presence of the hole. This is the case, if the hole diameter
is small compared to the mean free path of the gas molecules, i.e. the average distance between the
collision of two gas molecules.

Through substitution with the ideal gas law, p = p/(kgT), we obtain

kgT pA

Keftusion = A=—_P2
effusion Zﬂmp \/W

This equation is the basis for the Knudsen method, which is used to determine the vapor pressure of
liquids and solids, particularly of low vapor pressure compounds. When a gas of known molecular mass
effuses from a closed container through a small hole of known surface area, the mass loss is proportional
to the vapor pressure of the compound.

3f:/zcosasin9d9=%



53 COLLISION RATE AND MEAN FREE PATH

Here we derive an expression for the frequency at which gaseous molecules collide. This collision rate,
together with the probability that a collision leads to a chemical reaction, will then later allow us to
calculate the speed of gas-phase chemical reactions.

We make the simplifying assumption that the molecules are hard spheres of diameter d, so that a
collision occurs if the distance of two molecules is smaller than d, as illustrated below for a molecule
moving from the left to the right.

Just hit 4
Just miss

We can see that this molecule will collide with every other molecule located within a cylinder of cross
section o = md?. We call this quantity ¢ the collision cross section. Within a time 4t, a molecule on
average sweeps out a cylinder of volume o(u)At, where we have used the average speed (u) as derived
above. Let us (wrongly) assume for the moment that all the other molecules are stationary. For a given
gas density p, the molecule thus undergoes AN, = pa{u)4t collisions. The collision rate z, thus
becomes

_ ANy 8kpsT

At polu) = po mm

Zy

As the molecules within the collision cylinder are not stationary, however, we need to modify this result.
Instead of the average speed of a single molecule (u), we should rather use the average relative speed
of two molecules (uyz) = (|, — Ug|). By going to a center of mass coordinate system, we will derive
this average speed difference to be

8kyT
mu

(ugp) = |ty — tpl) =

mimy

where u = is the reduced mass. With m; = m, = m, we obtain u = m/2, so that

,8kBT ,8kBT
zs = poiag) = V2po(u) = V2po |——=po -

Quiz: Calculate the collision rate of a single nitrogen molecule at 300 K and 1 bar, assuming o =
0.450 - 10718 m2,

my+m;

A concept closely connected to the collision rate z, is the mean free path, i.e. the average distance a
molecule travels between collisions

w1

zy V2po

Quiz: Calculate the mean free path of nitrogen at 300 K and 1 bar, assuming o = 0.450 - 1078 m?2,



We can also arrive at the same expression for the mean free path with a different approach. The number
dN of collisions that a molecule will undergo in a collision cylinder of length dx is dN = gpdx, so that

L . dN .
the average number of collisions per unit length becomes - = 0P A beam of n molecules crossing a
gaseous sample thus gets attenuated (i.e. the number of unscattered molecules decreases) with a rate
dn dN

o TV T P

which upon integration becomes
X
n=nyge °P* =nye 1
. 1 . o o
where the mean free path [ arises as the - attenuation length. Note that in this derivation, the mean free

path [ is missing a factor of 1/+/2 because we have again incorrectly assumed that the molecules in the
collision cylinder are stationary.
The probability p(x) for a molecule to undergo a collision at x is

dn 1
__dx _ - T
p(x) = y ;e

which we can use to verify that the mean free path (x) = |, 000 xp(x)dx = L.
By measuring the attenuation of a molecular beam crossing a gas cell as a function of pressure, one can

determine the collision cross section.

T T T T
10 CsCl! beam

Transmission

10% xP/torr

Attenuation data for the scattering of a thermal beam of CsCl (T = 1100K) by Ar
atoms and by the polar molecule CH,F; (both at 300 K) in a 44-mm cell. The logarithm of the
transmission decreases lincarly with target gas pressure P (and thus ng). [Adapted from H
Schumacher, R. B. Bernstein, and E. W. Rothe, J. Chem. Phys., 33, 584 (1960).)

Another important quantity is the total collision frequency. In a pure gas, the total frequency of
collisions per unit volume is

1 1 8k,T

ZpA =EPZA =§P20' p—




where the factor 5 s introduced to avoid double counting collisions. In a mixture of gases, the total
frequency of collisions per unit volume between the molecules of type A with those of type B is

Zap = Oap{Uap)PaPB

. 8kpT myms,
with (u = = ando,g =T
( AB) U , U m1+m29 AB

dA+dB)2
2 .

54 CENTER OF MASS COORDINATES
Bimolecular collisions are most easily described in center of mass coordinates, which we will derive
here. To this end, we carry out the following coordinate transformation

(v4,v5) = (Vem, Wap)

where (v,4, V) is the coordinate system given by the velocities of the molecules, and the new coordinate
system (v, Wap) describes their motion in terms of the center of mass velocity v.,, as well as the
relative velocity of both molecules w, . This will then also allow us to determine the average relative
speed of two molecules that we have used above for the calculation of the collision rate.

The center of mass cm of two molecules of masses m, and mp is the mass weighted average of their
position vectors.

myry, + mgrpy

rC
m my +mg

By taking the time derivative, we obtain

ar., myv, + mgvp

dt M my +mg
which shows that the center of mass is moving with a constant velocity v.,,,. By subtracting the velocity
of the center of mass v, from the velocities of the molecules v, 5, we obtain the velocities wy, g in

the center of mass frame, i.e. in a moving coordinate system whose origin is the center of mass.

vA = vcm +WA
‘UB = vcm +WB

In these expressions, we wish to replace w, and wg with the relative velocity w,p of the molecules in
the center of mass frame

Wug =Wy —Wp = Wy +Vep) — (Wp + Vo) =Vy— Vg = VUyp



The sum of the momenta in the center of mass frame is zero.
muwy + mgWp = my(Vy — Vo) + Mp(Wp — Vo) = mMuvy + mpvp — (My + Mp)Vey = 0

This expression allows us to eliminate either w, or wy from the equation wyp = w, — wpg, and we
obtain

my my + mg
WAB == WA +_WA == mAWA—
mpg mymeg
We introduce the reduced mass
mympg
u=———
my + mpg
so that we can write
UWyp = MyWy = —MpgWp

We thus find the following equations describing the coordinate transformation:

Vy = Ve + UWyp /My
Vg = Vem — UWyp/Mp

The total kinetic energy of the system is given by

UW 2B

my

HWAB>2

) 1 ) 1 2 1
Eyin = =myuv; + —mpvs = -my (vcm+ ) +Em3 (vcm—
mg

2 2 2
1 1
=3 (Mg + mp)vim + EﬂWjB + VemliWap — VemlUWyp

1
= E (mA + mB)vczm + Eﬁuv/%B = Ekin, em T Ekin, AB

We can thus see that the total kinetic energy is composed of the kinetic energy involved in the motion
of the center of mass, which is associated with the mass m, + mpg; and that of relative motion of the
molecules in the center of mass frame, which is associated with the reduced mass p.

As the two contributions to the kinetic energy suggest, we can view the collision as the relative motion
of the molecules superimposed on the center of mass motion.
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After the collision, we obtain for the center of mass velocity of the product molecules C and D (whose
masses may differ from those of the reactants)

Mmcevc + mpvp

v
cm me + mp



Since the total momentum must be conserved
vaC + mD‘UD == mAvA + vaB

we find that the center of mass velocity does not change during the collision. Therefore, the kinetic
energy of the center of mass motion Eyj, ¢y = %(mA + mp)v?,, remains unchanged, so that we can
neglect it if we want to describe a chemical reaction. Only the kinetic energy associated with the relative
motion Eyjy ag = % uvig is available for the reaction. While the relative velocity may change during
the course of a collision, the sum of the relative kinetic energy and internal energy must remain constant.

Einternal, AB + Ekin, AB = Einternal, CcD + Ekin, CcD

The expression for the kinetic energy will be useful in deriving the average relative speed of both
molecules. We begin by writing down the velocity distribution of the two molecules, which is simply
the product of two Maxwell-Boltzmann distributions.

f(vAxr vAy' Vaz, VBx» vBy: sz)dvAxdvAydvAzdexdeydez
3
(mymg)2 _mavi+mpvg
= — 2kT  dv,,dvy, dv,,dvg,dvg,dv
A A A B B B
(21Tk3T)3 x y z x y z

After carrying out the coordinate transformation, we obtain®

f(vcm,x' vcm,y: vcm,z: VaBx» vAByv UABZ)dvcm,xdvcm,ydvcm,zdvAB,xdvAB,ydvAB,z

3
= 2 2
(mA mB ) 2 (mA+mB)UCm+ﬂUAB

N (2mkgT)3 € 2kpT AVerm xAVem,y AVem,zAVap xAVap yAVap 2
3 1 _(ma+mp)viy 1 _Uvip
= (mAmB)Z 3€ 2kpT dvcm,xdvcm,ydvcm,z 3 € 2kBTdvAB,xdvAB,ydvAB,z
(2mkgT)2 (2mkgT)2

We eliminate the terms containing the center of mass part by integrating over all center of mass
velocities, with

1]

We are left with

_(ma+mp)véy 1
- 3¢€ 2kpT dvcm,xdvcm,ydvcm,z =

3
(ZﬂkBT)Z (my + mp)2

é%g

3 2
u )E _HVap

f ( VaBx» VaBy» VABz)dVAB,deAB,ydUAB,z = e ZkBTdvAB,xdvAB,ydvAB,z
2nkgT

As in the derivation of the Maxwell-Boltzmann distribution, we transform to spherical coordinates®

_l“’le
f(vag, @, 0)dvppdpdd = (27_[#?) vige 2ksT sin 6 dvagdpdd
B

N W

4 — .
dUAxdvAydvAzdedeBydez = dvcm’xdvcm’ydvcm,zdvAB,xdvAB,ydvAB’Z (Deere!)
> dvsp xdVap ydVap , = Vip Sin 6 dvapdpd6



and integrate over all angles® to obtain

3
ﬂ”is

Ho\z -
f(vap)dvag = 4m <2nkBT) VAZ\BB 2ksT dvpp

This is the distribution of the relative speed v, of two molecules, which is a Maxwell-Boltzmann
distribution containing the reduced mass p instead of the molecular mass.

For m; = m, = m, we find that u = m/2. Therefore (vo5) = V2(v,), which we have used above.

5.5 DYNAMICS OF BIMOLECULAR COLLISIONS — REACTIVE HARD SPHERES

Steinfeld, J. 1., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 8. (Prentice Hall,
1989).

In this section, we will study the dynamics of bimolecular collisions. Based on the results from the
kinetic theory of gases, we can derive simple expressions for the rate constants of bimolecular gas-
phase reactions. Initially, we will assume that the reacting molecules are hard spheres. We will then
obtain a more accurate picture by considering more complex intermolecular potentials. Finally, we will
discuss solving Hamilton’s equations of motions on the potential energy surface and solving
Schrédinger’s equation to obtain a quantum mechanical solution.

Above, we have derived the collision rate per unit volume of two molecules

Zap = Oap{Uap)PaPB

. 8kpgT mim, da+dp 2 . .. .
with (uyg) = M T ey andoyg =7 - ) Assuming every collision leads to a reaction,
1 2

we obtain a rate constant for the bimolecular reaction

dy +dg\> |[8kgT
k(T) = opp{usp) = 7T< 2 2 B) ) T’-'Z
This rate grossly overestimates experimentally determined reaction rates, since for most gas-phase
reactions, not every collision leads to a chemical reaction. Moreover, the model predicts that k(T) o
T, whereas experimentally, one typically finds Arrhenius behavior with k(T) o e ~Fact/kBT

The reactive hard spheres model addresses some of these issues by taking a refined view of the
molecular interaction. The sketch below depicts a collision between two molecules A and B, which we
assume to be hard spheres. The molecules collide at a relative velocity v, p = v, i.e. with an energy
E = %lwz. The minimum distance is d = %(dA + dg). To describe the collision geometry, we

furthermore introduce the impact parameter b, which describes the center distance of the spheres in
the direction orthogonal to the velocity vector .

5[ d¢ [ sin6do = 4n



The velocity vector v can be decomposed into a tangential component v (parallel to the tangent plane
of the two spheres) and a component v, that is orthogonal to it. We can similarly decompose the kinetic
energy

1 ,.1 5
E= E,uv" +§,L£17J_ =E+E,
where only the second term E| = %uvf is assumed to be available to drive the reaction as it arises from

motion along the line of centers. With the angle 8 between the velocity vectors v and v, , we find that

E, v? b?
f:v—;=c0529=1—sin29=1—ﬁ

Furthermore, the model assumes that the reaction will only occur above a certain minimum collision
energy E along the line of centers. The energy dependent reaction probability Pr(E, ) is therefore
defined to be

(0 ifE, <E"

where above threshold, the reaction occurs with a probability p. This leads to a reaction cross section
that depends both on the energy E as well as the impact parameter b. Since we usually cannot control
the impact parameter, we integrate to obtain the reaction cross section g (E) that only depends on the
energy

[ee]

or(E) :JPR(EL)'an db
0

We can see that for E < E*, ox(E) = 0.
2 *
For E > E*, we have to calculate the integral. From E, = E(1 — %) > E*, weobtain b < d /1 — EF,

so that we can change the integral boundaries.
E*
E
E*
or(E) = J p - 2nbdb = nd?*p(1 — F)
0

d |1

We thus obtain

oo (E) = O L HE<E
R ndzp(l—F) ifE > E*



o, (E)

To obtain the thermal rate coefficient k(T) = (o (E)v(E)), we average over a thermal population of
molecules as given by the Maxwell-Boltzmann distribution F(v) for the relative speed

co o 3 2
uo\z o, -
K(T) = j oR(E)v - F(v)dv = j GR(E)U-4n<2ﬂkBT) v2e TiaT
0 0

We transform the integral’ and change the boundaries to reflect that the cross section is zero for E < E*

oo (00

1
2

E
) J wd?p(E — E*)e FaTdE

1
2

) OJEJR(E)e_"%TdE =L(

k(T) =i(

kgT \mukgT kgT \mukgT

After integration, we obtain®

Note that the rate constant is a product of three factors.

hard-sphere cross section X mean velocity X Arrhenius factor

d(Ink i E imi
adn karchentus) _ _ Ea (oo find a similar

_Fa
If we compare with the Arrhenius law, kprmenius = A€ *BT, with =
a(i/T) kg

temperature dependence

dink) T E
d(1/T) ~ 2 kg

and see that the threshold energy E™* corresponds to the Arrhenius activation energy E,, while the
product of hard-sphere cross section and mean velocity corresponds to the prefactor. With a reaction
probability of p = 1, the model tends to overestimate the rate constant. Therefore, p < 1 is introduced
as an ad hoc correction to account for collisions that possess sufficient energy, but still are not reactive.
The variable p is called the steric factor, encapsulating the notion that not all molecular orientations in
a collision will lead to a reaction. We can already guess that ultimately, this steric factor is related to
the entropy of activation.

1 dE
7E=E,uv2,dv=—
uv

8 ([, 2
J, xeTadx=a



5.6 AN APPLICATION TO TOLMAN’S THEOREM
Laidler, K. J. Chemical Kinetics, Section 3.1.2. (Prentice Hall, 1987).

The thermal rate constant for bimolecular reactions derived above allows us to demonstrate Tolman’s
theorem, which provides insights into the nature of the activation energy of a chemical reaction. It states
that the activation energy of a molecule E, is equal to the difference between the mean energy of the
reacting molecules (Er) and the mean energy of all molecules (E).

Eq = (Eg) —(E)

We will show that this holds for a bimolecular gas-phase reaction with an energy dependent reaction
cross section oy (E). For the thermal rate constant k(T), we found above

1 o 1 o

)ZJ Eo(E)e FoT dE =i( )ZJ g(E)dE
0 0

k(T) =i(

kgT \mukgT kgT \mukgT

where we have introduced the function g(E), which is proportional to the reaction rate k(E) at one
specific energy.

dInk(T) 3 din [~ g(E)dE
Eq = kgT? ———= = ——kgT + kgT? —=
@« 7B dT 2l ¥ s dT

We can simplify

(o] d (o) o E
din[” g(EYdE  Zply 9(B)AE Ny 1 7z 9(E)AE

dr [ g(BE)dE [ g(E)dE

so that we find

“Eg(EYdE 3
s SRR
0

a
which is indeed Tolman’s theorem.
The energy distribution of all molecules f(E) as well as that of the reactive molecules g(E) is shown
below together with the collision cross section o (E) for the reactive hard sphere model. It is apparent

that the mean energies differ by the chosen threshold energy E* = 10 k] /mol.

Threshold energy E" = 10 kJ/mol
020 \ \ ‘ ;
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If we calculate the activation energy E, for the reactive hard sphere model (with p = 1), we find indeed

o LS E*\ --E_
Jo Eg(E)dE 3 Jo. E?md? (1—7)3 T5T dF
T [Pg®dE 2T

—ZkyT

a

ffEnd2(1-%;)e‘é%dE

E
[Z(E* —EE*)e ksTdE 3 . 3

Jg-(E — E*)e KsTdE

5.7 DYNAMICS OF BIMOLECULAR COLLISIONS — TWO-BODY CLASSICAL SCATTERING

Steinfeld, J. 1., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 8. (Prentice Hall,
1989).

In this section, we will develop a classical description of bimolecular collisions in order to derive
differential and total scattering cross sections. We assume that the particles interact through a central
potential U(r), where r is the distance between the particles. Strictly speaking, such a description is
still only valid for simple systems, such as the collision of two rare gas atoms, whereas many chemical
reactions of interest will involve more than two atoms. However, analytical solutions only exist for the
two-body problem. Most importantly, the description of two-body scattering with a central potential
will allow us to develop general concepts that will be useful even for more complex bimolecular
reactions.

We begin by considering the total energy of the two colliding particles A and B, which consists of
kinetic, potential, and internal energy.

1 1
E= Emvj + Emvé + U(T) + EA, internal + EB, internal

We can distinguish different types of collisions. In an elastic collision, the internal energies of the
particles are left unchanged, whereas in an inelastic collision, translational energy is converted into
internal energy or vice versa. Finally, in a reactive collision, the molecular species also change their
nature.

Due to the symmetry of the central potential U(r) through which the particles interact, it is convenient
to describe the collision in a fixed-center-of-force coordinate system. As before, we transform into a
center of mass coordinate system, in which a composite particle AB of reduced mass p =
mymg/(my + mg) appears to move along the trajectory r(t) = ry(t) — rg(t). We describe this
motion in polar coordinates (7, 8, ¢) with the origin of the coordinate system coinciding with the center
of the potential U(r). The scattering geometry in the fixed-center-of-force coordinate system together
with the pertinent variables is sketched below.
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The composite particle AB has coordinates (7, 6, ¢) and travels at velocity %. The particle is thought

to originate at infinite distance, travelling parallel to the x axis with an impact parameter b. The
interaction with the central potential leads to a deflection of the trajectory by an angle y(b) that is a
function of the impact parameter. Note that for a spherical potential U(r), the scattering process is
confined to a plane, so that the azimuthal angle ¢ does not change during the collision and the entire
scattering geometry has cylindrical symmetry. We will therefore find that there is no dependence on
the azimuthal angle ¢.

Particles originating in the differential surface element d(mwhb?) are scattered into a solid angle d2 =
sin y dyd¢. Overall, the total particle flux must be conserved, which we can express as follows

or(v,I) = JPR(v,b; ') 2mbdb = Jf Ix(x, ; v, INdN

Here, ogx (v, I') is the total scattering cross section, with v and I' the particle velocity and internal state,
respectively. As we have seen before, the total scattering cross section can be obtained by multiplying
each surface element d(mbh?) = 2mbdb with its corresponding reaction probability Pg(v, b; I') and
integrating over all impact parameters. The integral [ Pg(v, b; I') 2bdb therefore corresponds to the
incoming beam. We can also obtain the total scattering cross section by integrating the differential cross
section Ig(x, ¢; v, ") over the entire solid angle, [[ Iz(x, ¢; v, [)dQ. This integral corresponds to the
scattered beam.

To derive the partial scattering cross section of the elastic collisions of particles interacting through a
central potential, we first try to find the deflection function y(b). We begin by writing down the total
energy of the particle. In Cartesian coordinates, the energy of a particle moving in the xz-plane is

1 .. 1
E=§,ux2+§uzz+U(r)

We transform into polar coordinates and obtain (prove!)

1. 1. 1.1,
E= E,u(rcos 0)? +E,u(r51n9)2 +U(r) = E,urz +§ur292 +U(r) =

E=suv?+ ol
B 2ur?

+U(r)

where L = pvyb = pv'b’ is the angular momentum, with v, the initial velocity and the primes denoting
the variables after the collision.

A particle of non-zero angular momentum L # 0 experiences a repulsive force in its radial motion due
2

. L
to the rotational energy term 5

e that is termed centrifugal barrier. The particle experiences an

effective potential

LZ
Ueff = 2‘[,17‘2 + U(T')
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We derive the trajectory 6(r) from the equations for the conserved quantities, the angular moment L
and the energy E.

L= /,erﬁ; do = Ldt
dt ur?

E=- (dr)2+ Y ovey d=—-|A(r-uer )| T
—2M\at 2ur? s | r 2ur? r

We substitute dt to obtain

1
L |2 L? 2
do = E-U(r) - dr
2ur?

Cpr? |

1
Before integrating this equation, we substitute L = uvyb = b(2uE)z, where we have used vy = %
This can be seen by realizing that initially, the particle is at infinite distance (r — ), so that its potential

energy is zero for any well-behaved potential energy function, U(r — o0) = 0. Moreover, the rotational
2

energy must be zero, m = 0, so that the particle only has kinetic energy, i.e.
1
E = E.Wg
Substitution of L gives
dr
dé = —b T
U(r) b?2]2
21— -
r [1 E  r?
Finally, we obtain 6(r) through integration
T
dr
6(r) =-b J

1
U(r) b2]2
21— 2
T [1 5 2



The sketch of the scattering geometry shows that every trajectory has a point (7, 8.) at which the
. .. . . .. d .
particle has a minimum distance 7, from the origin and at which d—: = 0. In other words, the particle

moves only tangentially, and its energy is composed of potential and rotational energy only. Note that
because of the symmetry of the potential, the trajectory is symmetric with respect to a line through
(7., 8;) and the origin. Therefore, we find for the total deflection angle y = m — 2 6., as can be seen in
the sketch above.

)((E,b)=1r—29€=rr—2bj

1
U(r) b2]2

Te .2 _ =
r [1 E r2

dr

We can now obtain deflection functions for different central potentials. We will again start with the
hard-sphere potential with

0 (r>d
v = {oo (r <d)

and r, = d for collisions at any energy. We find

1

[ ar b
x(E,b) =rr—2bJ—= e = Zarccosa
d 2 b?]2
-]
T

We note that for b > d, the acos function is not defined, and no collision occurs, so that y(E, b > d) =
0. Moreover, we find that the deflection function is energy independent. Trajectories of hard-sphere
collisions and the corresponding deflection function are shown below.

b4

Vo ( no deflection for b >d )

N

From the deflection function, we can calculate the differential cross section. For hard-sphere collisions,
x(b) is a monotonic function that maps one specific deflection angle y to one specific impact
parameter b. In this case, molecules from the annular element 2mbdb are deflected into the solid angle

element sin y dy A = 2m sin y dy, and we can write
0

I(E, y)|2msin y dy| = 2mbdb

gy b b &
(.0 = |sin d_)(| " ld(cosy)| 0 4
Xabl [ ab

The differential scattering cross section is thus independent of the energy E as well as the angle (in the
center of mass system). We can integrate the differential cross section I(E, y) in order to obtain the
total cross section



d2
o(E) = 47'[7 = nd?

which is the hard-sphere collision cross section we derived before.

The Lennard-Jones potential is a frequently used model potential that describes the intermolecular
interaction more realistically.
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Here, € characterizes the depth of the potential well. The (g) term describes a long-range attraction,

12
while the (g) term describes the intermolecular repulsion that sets in at short distances. Trajectories

for the Lennard-Jones potential as well as the deflection function are shown below.
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A comparison with the hard-sphere deflection function provides some insights.

For small impact parameter (b — 0), the deflection function resembles the hard-sphere one. For these
head-on collisions, the particle largely interacts with the steep repulsive part of the potential, which it
encounters at its closest approach. The interaction therefore resembles that of two hard spheres.

For large impact parameters (b — o), the deflection function approaches zero. Since at large distances,
the Lennard-Jones potential approaches zero, particles with large impact parameter barely interact,
which leads to a behavior that resembles that of hard spheres.

For intermediate impact parameters we observe negative deflection angles y, which is in stark contrast
to the hard-sphere collisions. For decreasing impact parameter, the particle increasingly interacts with
the attractive part of the potential, which leads to trajectories that wrap around the scattering center.
This behavior is even more pronounced for lower energies of the particle E.



dcosy
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The differential cross section is obtained from I(E, y) = b/ | and is plotted below for E = €.

\ large b

\

| tog 1) sin % |

small b

We see that for small impact parameters (b — 0, y — ), the differential cross section I (y) approaches
the constant hard sphere value d?/4, which agrees with our discussion above. For large impact

. . . . : d .
parameters (b = oo, y = 0), the differential cross section diverges, since | c;:x | — 0 (dashed line).

Similarly, we find a singularity (dashed line) at intermediate impact parameters, when the deflection
. - . d
function goes through a minimum at the so-called rainbow angle y,., so that | ;O;X

“rainbow angle” alludes to mathematical similarities in light scattering from rain droplets that leads to
the appearance of rainbows. The differential cross section can of course not become infinite. It turns
out that the singularities in our calculation arise from the classical treatment of the collision process. A
quantum mechanical treatment leads to the solid line shown above, in which the singularities are
smoothed out by the quantum nature of the colliding particles.

— 0. The term

By measuring differential cross sections, it is possible to deduce the intermolecular potential by means
of the scattering theory derived above. We can see how this can be achieved if we integrate the equation
for the differential cross section in a range of y values in which y(b) is monotonic, for example at
angles larger than the rainbow angle.

T b(m)=0
JI(E,)()lZT[Sin){d)(l =- J 2nbdb = b (x,)?
Xo b(xo)

This gives us a means to obtain the deflection function, which is connected to the potential U (1) through
the equations we derived above.
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Interatomic potential of He-He. The solid curve represents experimental data;
points are theoretical. [Adapted from A. L. Burgmans, J. M. Farrar, and Y. T. Lee, J. Chem.

Phys., 64, 1345 (1976); unpublished computational results by B. Liu and A. D. McLean.]



6 UNIMOLECULAR REACTION DYNAMICS

Steinfeld, J. 1., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 11. (Prentice Hall,
1989).

A unimolecular reaction follows the general equation

A* - products
where the asterisk indicates that in order for a reaction to occur, the molecule A must possess a
sufficiently high vibrational energy. We can distinguish three types of unimolecular reactions based on

the features of the potential energy surface involved. This is illustrated below with examples for each
type of potential energy surface.

a) Isomerization b) Dissociation with c) Dissociation without

barrier for recombination barrier for recombination
>
o
(]
C
I}
|
T
Q
(@]
o

Reaction Coordinate Reaction Coordinate Reaction Coordinate

CH,NC —» CH,CN CH.Cl —» HCI+CH, CH, —» 2CH,

A key issue for understanding unimolecular reactions is the mechanism of how a molecule acquires
sufficient energy to overcome the reaction barrier. In 1919, Perrin suggested that the molecules are
energized by absorbing radiation from the walls of the reaction vessel. Such a dissociation mechanism
has indeed been found to occur under special circumstances — for gaseous molecules at very low
pressures. In the absence of collisions, the predominant dissociation mechanism involves the absorption
of a large number of infrared photons that originate from black body radiation of the walls of the
container, so that the molecules are excited to energies above the barrier.

However, at moderate gas pressures, unimolecular reaction rates are found to depend on pressure, which
contradicts Perrin’s hypothesis. Moreover, the rates do not depend on the surface to volume ratio of the
container or the presence of absorbers. This suggests that the molecules are activated by collisions.

6.1 LINDEMANN-HINSHELWOOD THEORY OF THERMAL UNIMOLECULAR REACTIONS

This is the basis for the Lindemann theory (1922), which assumes that both activation and deactivation
of molecules A occurs in a collision with a collision partner M:

ky
A+MoA +M

ko1
A+M-A+M

ka
A* - products



Implicit in this model is the assumption that all A* + M collisions are “strong”, i.e., they all de-energize
the activated species A*. Under this strong collision assumption, the deactivation rate k_, can then be
simply calculated from the gas-kinetic collision rate zyy = gam{Uam)Papm = k_1[A][M].

If we apply the steady-state approximation to the concentration [A*], we obtain the overall rate R of the
unimolecular rection:

kik,[A][M]
R=rFk .[Al = k,[A*"] = 2217
unl[ ] 2[ ] k_l[M] + kz
At low pressure ([M] = 0), we find
kuni = ko = k1[M]

Here, the collisional activation is the rate-determining step, so that the rate k,,; becomes linearly
dependent on the pressure.

At high pressure ([M] — o), we find instead that the rate becomes pressure independent:

kik
kuni = ke = kl_12

Here, the activated and ground state species A" and A are in a pre-equilibrium with

so that the unimolecular rate constant k,,,; simply becomes the probability of the molecule A being
energized multiplied by the rate constant for the reaction k.

A log-log plot of the unimolecular rate constant, a so-called Lindemann plot
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While we have already derived the deactivation rate k_; = ayy{uam) from the gas-kinetic collision
rate Zyy, we will now also try to obtain expressions for the remaining two rate constants, k; and k.
We could estimate the activation rate k; from the reactive-hard-spheres model, which predicts the rate
at which collisions occur with a line-of-centers energy E | exceeding a given threshold energy E*

E* E*
k(T) = oam{uamde *8T =k_je kT

where we assume that the threshold energy E* is equal to the high-pressure activation energy E, of the
reaction (with the steric factor p = 1).

One finds that this approach underestimates the experimentally found values for the activation rate k.
In fact, the reactive hard spheres model neglects that the reactant molecule A already possesses a certain
amount of internal energy that is stored in its vibrational degrees of freedom, which should lead to a
higher activation rate k4. The higher the number of vibrational degrees of freedom, the more energy the
molecule stores at thermal equilibrium, and the higher k; should be. Based on this insight, Hinshelwood
in 1926 derived the following expression for k, which improves the agreement with the experiment:

k Eq\$71 _Eo
ky = —— <_0> e kT
(s — D' \kgT

Here, s is the number of vibrational degrees of freedom of the molecule. We can see that for activation
energies Ej that are typically much higher than the thermal energy kzT, the activation rate k, increases

with the number of oscillators s. (Note that for large s = %, we actually find that the Hinshelwood
B

expression predicts a decreasing rate. However, as we will see below, this is because the derivation

makes the approximation that s < ﬁ in order to obtain a simple expression for k;. Without this
B

approximation, the rate is predicted to keep increasing with the number of oscillators s.)

In Hinshelwood’s derivation, the ratio k—l is interpreted as the fraction of molecules exceeding the
-1

activation energy E, in the case of thermal equilibrium. As we have seen above, this is a good
approximation at high pressure ([M] — oo) where the energized molecules are in a pre-equilibrium with

k A . . oy
the ground-state molecules (k—1 = %). It is a more drastic approximation at low pressure, where
-1

energized molecules are formed in a single collision event that leads to a reaction before another
collision can occur. We therefore have to make the strong collision assumption (as above for
deenergizing collisions), i.e., that individual collisions are strong enough to create a thermal population
of activated molecules, as opposed to a ladder-climbing process involving multiple collisions to
populate the highest energy levels.

In the following, we derive the expression for the probability P(E)dE that in thermal equilibrium, a
molecule has an energy between E and E + dE. With the approximation made above, we can relate this
probability to the differential energizing rate dk, for populating molecular energy levels between E and

E +dE
- E /dE
)
kgT

In thermal equilibrium, the probability P(E)dE corresponds to a Boltzmann distribution for the
vibrational degrees of freedom of the molecule, which we will describe as 3N — 6 (3N — 5) classical
harmonic oscillators. In your quantum chemistry class, you have learnt that the energy levels of the

s—1

k1 (E
P(E)dE Tk, (s— 1)!<kBT)

harmonic oscillator are E = (v + %) hv;, where v; is the eigenfrequency of the oscillator. The sum of



states G (E) of such an oscillator (i.e., the number of levels with energies smaller than or equal to E) is
approximately

G(E) = E
_th'

In fact, this equation is exact, if we assume the oscillator to be classical, not quantum. The density of
d
states N(E) = G(E)

(i.e., the number of levels per unit energy) is then simply

1

i

The probability for such an oscillator to have an energy between E and E + dE is given by the following
Boltzmann expression:

E
N(E)e *sTdE __E_
P(E)dE = —— =¢ kBTdE

Jy, N(E)e ksTdE

For s oscillators of energies E; with Y};_; E; = E, the sum of states becomes

- —E1— ..—Es_1 Ey E-Ej— .—Es

E E —
h hv, " h 5., hvl 2 s
0 0 0 0

Let’s rewrite the integral bounds

E E-E; E—E;— ..—Es_q Hy H, Hg
0 0 0 0 0 0
Wlth H1 E and H = HTL 1 En 1-
Hy Hg_» Hg_q Hg Hj Hs_» Hg_q
J dE; ... J dE,_, J dEs—lJ dE; = J dE; ... J dE;_, J dE;_1 Hg
0 0 0 0 0 0 0
Hy Hg_» Hg_q

dE, ... j dE,_, j dE,_y (Hy_1 — E;_1)
0

1 Hg_» 0

dE, ..

1, 1
dE1 dES_ _HS—I = J dElJ dE2 J dES—Z E(HS_Z - 5_2)2

0 0 0
1

dE; ..—

0J

H

0J J

Hq Hg_, Hq H» Hg_p
0J J

H

J 1

0

We thus obtain



N

'H 1 hv;
and
Es—l
N(E)
(s — D, hv;
as well as’
_E_ _E_
N(E)e ksTdE ES~le ksTdE 1 ENSY _E /dE
P(E)dE = — = = = ( ) RpT (_>
o __E_ (s — D' \kgT kgT

Jy N(E)e ®sTdE  [” Es~le KsTdE
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In order to obtain k4, we calculate the fraction of molecules with energy exceeding the activation energy
E, through integration

[ee]

kk_1 JP(E)dE_ J( —1)' kf )S_le_k%(li_ET>

Eg

E
kgT

j W lerdx = j (v + %) e Y dy

X = 1)' Yy=X—Xg 5_1)'

*o= kBT

We carry out a binomial expansion for the term (y + x4)°~?! to find

s—1

kl e_xo S — 1 S—l—jjo .

e _ je=vd

k. (s—l)!Z( j )x" ye "4y
Jj=0 0

We can evaluate this expression knowing that | OOO yleVdy =T +1) = !

9 fomxS—le—xdx =T(s)=(s=1)!



We can further simplify the expression if we assume that x, = kE—OT » s — 1, i.e., the activation energy
B

E, is large compared to the thermal energy kgT multiplied by the number of oscillators s. This will be

true for small molecules with typical activation energies. In this case, only the first term of the binomial

expansion with j = 0 will be important, so that we obtain the expression stated initially above:

k e~Xo 1 Ey\* ! _Eo
! 5-1 (_0> o T

Kk, G-D" TG-0\UpT

6.2 RICE-RAMSPERGER-KASSEL (RRK) THEORY

The RRK theory is a statistical theory that allows us to calculate the reaction rate constant k. It is
obvious that this reaction rate constant should increase with the energy E of the activated molecule and
thus be a function of the energy, k, = k(E). Moreover, we expect that the rate constant should decrease
when we increase the number of oscillators s because for a given energy E, the are more ways to
distribute the energy between a larger number of oscillators. The probability for a sufficiently large
amount of energy to be contained in the mode that leads to the reaction is thus lower.

We generalize the Lindemann-Hinshelwood mechanism to take into account that the activation and
reaction rate constants both depend on the energy of the activated molecule. For an activated molecule
A with an energy between E and E + dE, we obtain

dk,
A+M > A'(E,E+dE) + M

k_y
A(E,E+dE)+M > A+ M

k(E)
A*(E,E +dE) — products

We obtain a differential unimolecular rate constant

dk
k(E)

k(E)
T

dkyni =

As discussed above, we assume that ? = P(E)dE. Moreover, we note that k_;[M] is the collision
-1

frequency w of the reactant molecule.

k(E)P(E)dE

ke, =
wni = O Y Y o

Upon integration, this gives the thermal unimolecular rate constant

[ k(E)P(E)dE
Funi = EJ KE) + @

The RRK theory assumes that the activated molecules of a specific energy E = E;, form a
microcanonical ensemble, i.e. all possible states of this energy are populated with equal probability.



Molecules with an energy of E, + E' in the critical mode will dissociate (or isomerize) within one
vibrational period of duration 1/v, with v the frequency of the critical oscillator. In other words, this
fraction of molecules dissociates with a rate corresponding to v.

Moreover, the theory assumes that even after some molecules have dissociated, the remaining
molecules continue to form a microcanonical ensemble. This will only be the case if (1) the energy
freely redistributes between all vibrational degrees of freedom (ergodic hypothesis) and (2) if this so-
called intramolecular vibrational energy redistribution (IVR) occurs on a timescale much faster than the
timescale of the reaction.

To derive the RRK rate constant k(E), we first calculate the probability for a molecule to have an
energy of E5 = E; in the critical mode by using the expressions derived above for density of states of a
set of s classical oscillators.

The density of states N(E, Eg = E,) that have an energy of E; = Ey + E' in the critical mode is the
density of states of s — 1 oscillators at a total energy of E — E; — E' multiplied by the density of states
of the critical oscillator at energy Eg = Ey + E’ and integrated over all energies E’

E-E

0
E—E,—E)2 1 E — Eg)S!
Mg s gy = [ EZRmE) ,__(E-E)
0

(s — 2T hy hvs (s — DT, hyg

We divide this expression by the total density of states of s oscillators of total energy E

Es—l

NE) = oD,

to obtain the fraction of molecules that have an energy of E5 > Ej in the critical mode

Mg _(en)”

We obtain the classical RRK rate constant k(E) by simply multiplying with the dissociation rate v.

E _ EO)S—l

k@j:v( -

5 0 15 20
E/E

0

We are now able to calculate the unimolecular rate constant k,,,,; using just the variables s, v, and Ej.
The RRK treatment gives a reasonable agreement with experiments. Shortcomings arise from the
classical treatment of the vibrations of the molecule. Moreover, the Arrhenius prefactor v, which in the



RRK model corresponds to a vibrational frequency (10" — 10" s™") underestimates experimental values,
which are usually larger than 10" s'. Such discrepancies are overcome by the RRKM theory, which is
a microcanonical transition state theory.

7 BASIC CONCEPTS OF STATISTICAL THERMODYNAMICS

This chapter provides a brief overview of some basic concepts of statistical thermodynamics that we
will subsequently apply in the derivation of Transition State Theory. Statistical thermodynamics is
based on the insight that macroscopic thermodynamic quantities ultimately arise from the properties of
individual molecules, which are described by quantum mechanics. Knowing the properties of
molecules, we can use statistical thermodynamics to derive macroscopic thermodynamic quantities.
Since thermodynamics deals with large ensembles of molecules, we can understand these quantities to
be averages of molecular parameters.

(Quantum) Mechanics Phenomenological Thermodynamics
microscopic macroscopic
~10 molecules, atoms, ... ~N, particles
microscopic molecular parameters macroscopic thermodynamic quantities
energy of the molecule E, temperature T entropy S,
momentum p, quantum state, ... heat capacity Cp +oe
Statistical

Thermodynamics

As an example, let us consider a container filled with a monoatomic gas. We can use macroscopic
parameters, such as the temperature 7, to describe the macrostate of this large ensemble of gas
molecules. At the same time, many different microstates exist that each correspond to this temperature.
To see this, consider that each gas molecule has 3 parameters that describe its position as well as three
that describe its momentum, giving a total of 6/N parameters {x;, p;} for all N gas molecules. As the gas
molecules are in motion, these parameters will assume different values at different points in time.
Nevertheless, these different microstates that the gas can assume all have the same temperature.

s

Statistical thermodynamics makes two assumptions about these microstates.



Postulate 1. The ergodic hypothesis states that over a sufficiently long period of time, a given system
will assume all possible microstates. In other words, if we start the system in one microstate, the system
will explore all other microstates that are possible for the given starting parameters. A consequence of
this postulate is that the time average of some observable M is equal to the ensemble average.

(M>t—>oo = (M>n—>oo

Postulate 2. According to the principle of equal a priori probabilities, all microstates have the same
probability. Taken together with Postulate 1, this means that the system will spend equal amounts of
time in each microstate.

Under these assumptions, we can determine which macrostate the system will assume under given
conditions simply by determining the statistical weight W of this macrostate, i.e. the number of
microstates that correspond to that macrostate. The macrostate with the highest number of microstates
will be the most probable. For a large number of molecules, this is the only macrostate we need to
consider, as it will be vastly more probable than any other state. This is a consequence of the law of
large numbers.

As an example, to illustrate this point, consider rolling N dices, where every dice represents a particle
or molecule. We are interested in a macroscopic property of the system, say the average number (A)
shown by the dices. The probability of different outcomes is shown below.
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For N = 2 dices, we see that the macrostate with (A) = 3.5 is the most probable, with six different
microstates {(1, 6), (2,5), (3,4), (4,3), (5,2), (6, 1)} corresponding to this outcome. For N = 10, the
probability distribution becomes more peaked, and for N = 10000, the macrostate (A) = 3.5 is
considerably more likely than other macrostates. For N — oo, we obtain a delta function. By analogy,
we can conclude that in order to describe the average properties of a large ensemble of molecules, we
only need to consider the most probable macrostate.

7.1 DERIVATION OF THE BOLTZMANN DISTRIBUTION

An important macroscopic property of an ensemble is the distribution of energy within it. Assume that
the N molecules of the ensemble are distributed of the energy levels {E;} and that N; molecules have

the energy E;, with
N = Z Ni
i

and



E=2EiNi
i

where the energy E is the total energy of the ensemble. If we are studying a microcanonical ensemble,
this energy is a fixed quantity, since in a microcanonical ensemble, the particle number N, the volume
V, and the total energy of the ensemble E are given. In a canonical ensemble, the particle number N,
the volume V, and the temperature T are given. Here, the total energy is a function of the temperature,
E(T).

For the statistical weight W of a given macrostate, we find

N!
LN

w

We obtain this result if we consider that there are N! ways of sorting the N particles into the different
energy levels of a given macrostate. However, it does not matter how the N; molecules of a given energy
E; are sorted. Since there are N;! ways of sorting these molecules, we divide by N;! for every energy
level E;.

We seek to find the macrostate with the highest statistical weight W. In other words, we want to find
the maximum of W, where the following condition must hold

Here, we choose to find the maximum of In W, which is equivalent to finding the maximum of W, but
facilitates the math in the following.

We have to keep in mind that we have to find this maximum under two constraints, namely that the
number of particles is fixed (N = };; N;) as well as the total energy (E = }; E;). In order to satisfy these

constraints, we choose the method of Lagrange multipliers to find the maximum. We first write these
to constraints in differential form

dN=ZdNi=0 a
i

i

and then multiply them with the Lagrange multipliers a and S, respectively. Finally, we add all three
equations to obtain

dlnW
' aNl le—Eale—EﬂElle=0
i i i

After rearrangement, we obtain

Eaan EdN = 0
,<6Nl- a=F i) i=

i



This equation can only hold if

dlnW
aN;

—a—ﬁEi=0

We use Stirling’s approximation'® to simplify the expression for In W

Inx!'=xlnx —x

so that

for all i.

forallx » 1

1nW=lnN!—ZNi! lenN—N—(ZMlnM—ZM)
i i i

With }; N; = N, we obtain
InW =NInN —ENilnNi
i

so that

E)an_(')(NlnN) 0
aN; 0N, aN;

Finally, we obtain
In Ni = —-a — ,8 Ei
or

N; = e~ % FEi

(Nl-lan-) = —lan' —-1= —lan-

Using the method of Lagrange multipliers, we have thus obtained an expression for the most probable
number of molecules N; that occupy energy level E;. We still have not determined the multipliers «
and S, which we will do in the following. We can eliminate a by calculating the population fraction in

a given level i
e_BEi e‘ﬁEi

Yie FEi B Q

N;
N

Here, we have defined the partition function Q with

Q= 2 e BEi

Y nx!=In1+In2+ - = f;clnxdx = xInx|§ — x|§ = xInx — x, where we have used partial

integration in the last step.



We are left to determine 5. We can for example do this by comparing with an expression that we have
obtained in the context of the kinetic theory of gases (section 4.1). There, we found that the ideal gas
law can be related to the average square of one velocity component of the gas molecules

pV = kgNT = Nm(u2)

We can now determine the average square of one velocity component (u2) using the distribution
function we just obtained

1
© 2 —Bymuj
(u2> = f_oo Uz€ * dity = i
x o _pgl
f_ooe ﬂzmu,zcdux ﬁm

so that we find § = 1/ kgT and

We have thus obtained the familiar Boltzmann distribution.

In the case of energy levels with degeneracy g;, we can easily see that the distribution becomes

with

7.2 PARTITION FUNCTIONS

We have seen that in the derivation of the Boltzmann distribution, the partition function @ naturally
occurred. In order to develop a better understand of the meaning of the partition function, let us write it
out with all energies referenced to the lowest energy level of the system, which we set to have zero
energy Ey = 0. In this case,

Eq

_Ei _ B
Q:Egie kBT=90+gle kpT 4 ...
i

We can see that at T = 0 K, only the ground state is populated Q = g,. In other words, the system has
access to only g, energy levels. At higher temperatures, higher energy states can be partially populated
and Q > g,. The exponential terms lead to values smaller than one and therefore to partial populations
of the upper energy levels. Knowing that k5T corresponds to the thermal energy a system has available,
we can interpret the partition function to be a measure of the number of states that are accessible to a
system at a given temperature.



Importantly, will see in the following that the partition function of a system allows us to derive all
thermodynamic quantities. Moreover, it is a crucial component to understanding Transition State
Theory.

Let us consider the partition function of one molecule. As you have learnt in your Quantum Chemistry
class, the energy of a molecule is a sum of translational, rotational, vibrational, and electronic energy.

€ = €trans T €rot T €vib T €elec

At low enough temperatures, we can usually neglect the electronic part as only the electronic ground
state is populated. In this case, we can write down the molecular partition function q as follows.

€ €trans,it€rot,jt€vibk

= E . kpT — E . 2 (..: kgT = .

q= gie BY = gtrans,tgrot,]gmb,k e B = Qtrans9rotQvib
i ijk

We see that the molecular partition function is a product of a translational, a rotational, and a vibrational

partition function.

With knowledge of the energy levels of the particle of the box, the rigid rotor, and the harmonic
oscillator, we can derive approximate expression for the translational, rotational, and vibrational
partition functions, as shown in Appendix B.

We can also derive the partition function of an ensemble of N molecules that we will here assume to be
non-interacting, i.e. the energy levels of a molecule that is part of the ensemble are identical to those of
an isolated molecule. A given energy E; that the ensemble can assume is the sum of the energies €; of

Ej=2€;

i

all the molecules of the ensemble

For the partition function of the ensemble, we obtain

Ej

_Ej g g
0= g =) | [ale™ =] [} gl =] [a=a"
j i j i

j i

We see that the partition function of an ensemble of N non-interacting molecules is equal to the partition
function of one molecule to the power of N.

In a crystal, where each molecule has a fixed position, one can distinguish the individual molecules.
This is not the case in a gas. For N indistiguishable molecules, we obtain instead
g

=W

where we take into account that for each energy of the ensemble, there are N! combinations that lead to
this energy, which we cannot distinguish.
7.3 THERMODYNAMIC FUNCTIONS

If we know the partition function of an ensemble, we can derive all thermodynamic functions from it.
In the following, we will go through the most important.



Internal energy U:

3 “FoT szc’)q a1l alnQ

€:(J; € "B T n n

U=N-(e=n-=° = N2 0T 22T = 2
Sigie For ? o o

Heat capacity c,:

U\ @ 91nQ 91nQ 921nQ
_ (2% _ 2% 2 _ 2
C”_( ),; aT(kBT aT ) 2k T 57—+ k1" —5p3

Entropy S:

where Q™ refers to heat, not the partition function.

S T
dlnQ 9%InQ dlnQ
0 0

et o =Yk
= Kp aT BUQ—T gInQ

Helmbholtz free energy A:

A=U—=TS =—kzTInQ

Pressure p:
dA = dU —TdS — SdT = —SdT — pdV
where we have used
dU = TdS — pdV

It follows that

0A dlnQ
P=—5,= kgT P
Enthalpy H:
H=U+pV =ksT? a;nTQ + kBTa;l/Q V = kyT ZE? + Zigg
Gibbs free energy G:
JdInQ

G=A+pV =—ksTInQ + kT

adlnV



7.4 EQUILIBRIUM CONSTANTS OF GAS PHASE REACTIONS

Here, we will express the equilibrium constant for a gas phase reaction in terms of partition functions.

In equilibrium,
2 Vit = 0

i

where v; is the stoichiometric coefficient of compound i (negative for reactants and positive for
products), and y; is the chemical potential
(6Ai>
Oni

(o)
l’ll an
The Helmbholtz free energy A; of an ideal gas with N; non-distinguishable particles is

V' pTn; jEN V,T,n]-ini

ql

Ai = —kBTln Qi = —kBTlIl —kBTNi In qi + kBTNi In Ni - kBTNl'

= —n;RT In

- RniT
NiiNg

where Ny is Avogadro’s constant. Consequently,

aAi q;
U = ( ) = —RTIn—
‘ ani V,T,lei‘l‘l.i N"

Finally, we have to introduce one more modification to the partition functions. When we write

_€y
j

the energies €;; are referenced to the ground state energy of the molecule i. However, in an expression
dealing with several different reactants and products, we have to introduce a common energy scale. We
do this by referencing all molecules to the energy, at which reactants and products are entirely
dissociated into atoms, with the corresponding atomization energy of species i denoted by €;4. It is this
atomization energy that we substract from the molecular energies, so that we obtain the modified
partition function q;q4

_Eij—€id €id
Qia = 291' e ksT =eksTq;

Finally, we can write

Vi€id Vi€id
e kT qlieksT
E Vil = E —RTInI " _ _pr ln| | 4=

Rearrangement gives the equilibrium constant Ky

| | Vi | | Vi AUg

— i — i -

KN - Ni - qi -e RT
i i




where
AUy =Ny ) vieia

i
is the reaction energy at 0 K. Note that the equilibrium constant Ky is defined in terms of numbers N;
of the different species. In order to obtain the more familiar equilibrium constant K, that is defined in
terms of molar concentrations c;, we have to divide each number N; by Avogadro’s contant N, as well

as the reaction volume V.
Vi ql Vi _M —Z'V' Vi _%
) :1_[<NAV) e m = L) ”Hq" e
L

) N;
eIl TG
i i NaV i

8 TRANSITION STATE THEORY

Steinfeld, J. 1., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 10. (Prentice Hall,
1989).

Transition State Theory predicts the rate constants of reactions based on the statistical properties of the
system. The basic assumption of the theory is that the transition state of the reaction is in thermal
equilibrium with the reactants, so that statistical thermodynamics can be used to derive a simple
expression for the thermal rate constant. Since Transition State Theory is based on a statistical picture,
it neglects any microscopic details of the reaction and will fail if those are important. This may for
example be the case if under the experimental conditions, the reactants do not form a statistical
ensemble. In this case, only detailed (quantum) dynamics simulations would be able to provide an
accurate picture.

8.1 MOTION ON THE POTENTIAL ENERGY
SURFACE

As you have learnt in your Quantum Chemistry
course, the Born-Oppenheimer approximation
allows us to separate the electronic and nuclear
motion. The nuclei can then be thought of as
moving within a potential that is created by the
electron cloud, which instantaneously rearranges
when the nuclear positions change. An example
of a calculated potential energy surface is shown
below for the reaction of H, with an F atom. This &0
system has 3N — 6 = 3 vibrational degrees of
freedom. However, in order to be able to display
the surface, we restrict the nuclei to a linear
collision geometry. This leaves only two 200 |
coordinates, the hydrogen-hydrogen distance o
(rqn) and the hydrogen-fluorine distances (1yg). e /"2
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The contour plot below illustrates the salient features of a potential energy surface, here that of the
reaction of H, with an H atom, also in linear geometry. Since this is a degenerate reaction, the surface
is symmetric with respect to the diagonal. The two hydrogen-hydrogen distances are labeled r; and 7.

rs

-~
Wl

I'O -------------------

Reaction path

The dashed line marks the minimum energy path leading from the configuration H, ... H to the
configuration H ... H». Products and reactants are separated by the transition state, a saddle point of the
potential energy surface that lies on the minimum energy path. For the H» ... H system, the transition
state is symmetric with r; = r, = 7. If we perform a normal mode analysis at the saddle point, we find
that one of the normal modes s corresponds to motion along the minimum energy path

S = T'1 - Tz
and the other normal mode ¢ to motion orthogonal to the minimum energy path

€=T'1+T2

The potential U as a function of s and ¢ is shown below.

We can see that at the transition state, the minimum energy path has a maximum, while the orthogonal
coordinate shows a minimum. In general, the transition state is a saddle point, which is a maximum
along the reaction coordinate (the minimum energy path), and a minimum along all other normal modes.



A normal mode analysis at the transition state therefore reveals one imaginary frequency, which belongs
to the normal mode that describes motion along the minimum energy path. To see this, remember that

. . . k. da2u .
for a harmonic oscillator, the angular frequency is w = \/;, with k = T where u is the reduced mass

and x the coordinate of the oscillator. All other 3N — 7 frequencies are real and correspond to vibrations
of the other normal modes.

8.2 POSTULATES AND DERIVATION

Transition State Theory (Eyring, Evans, and Polanyi) makes two basic assumptions, namely that
electronic and nuclear motion can be separated as discussed above (Born-Oppenheimer approximation)
and that the reactant molecules are distributed among their energy states according to the Boltzmann
distribution.

The theory uses a simple physical picture of an elementary reaction, say between reactants A and B,
which proceed through a transition state X* to form products

A + B - X* > products
Transition State Theory makes the following specific assumptions.

1) No recrossing. Reactants that have crossed the transition state X* in the direction of products cannot
turn around and reform reactants. Similarly, if reactants and products are in equilibrium, then the
products that have crossed the transition state in the direction of the reactants, cannot turn around to
reform products.

The sketch below depicts the potential energy as a function of the reaction coordinate s or the minimum
energy path. We define a small region on top of the barrier between two parallel dividing surfaces that

. 1) [
are orthogonal to the reaction path and that are located at s = — 5 and s = > Note that these surfaces

are 3N — 7 dimensional. We consider all molecules between these two surfaces as transition states.
Those outside these surfaces are either reactants or products.

EO
Parallel dividing surfaces

Potential energy

o
for reaction

Reactants
Products

Reaction coordinate

2) Quasi-equilibrium hypothesis. The transition states are distributed among their states according to
the Boltzmann distribution, even if there is no equilibrium between reactants and products. It can be



shown that this second assumption is not strictly necessary, but that only the first assumption is
fundamental to the theory.

If reactants and products are in equilibrium, we will have both transition states moving forward to give
products as well as those moving backwards to form reactants. We denote their concentrations as N}f
and N, respectively. At equilibrium, the number of transitions states moving forward must equal the
number of transition states moving backwards, N ; =N If . Moreover, the total concentration of transition
states is N = N;: + N; = ZN;F.

Under the assumption of quasi-equilibrium
N*¥ = K*[A][B]

where K* is the equilibrium constant for the formation of the transition state. Moreover, we can
calculate the concentration of the forward moving transition states

v 1K¢[A][B]
f=—2 "2

We can derive this equilibrium constant K* from statistical thermodynamics (Section 7.4). For a gas-
phase reaction,

b E,
ot = ot 5%

Q405

where the partition functions of the reactants, Q4 and Qp, as well as that of the transition state Qfot are
defined as the molecular partition functions g; divided by Avogadro’s number N, and the reaction
volume V.

q;

Qi = N,V

The energy E,, which we defined as the reaction energy at 0 K (Section 7.4), corresponds to the
difference in zero-point energies between reactants and the transition state, as indicated in the sketch
above.

Now that we have derived the concentration of the forward moving transition states Nf1C , we just need
an expression for the forward reaction rate k*. The product of both gives the rate of the reaction

— Lint
R = k*N¢

which divided by [A][B] gives the rate constant of the reaction

¥

kpor = k¥ N = L
BT [AlB] 2

In order to calculate the forward reaction rate, Transition State Theory makes one more assumption.

3) Classical motion along the reaction coordinate. At the transition state, motion along the reaction
coordinate may be separated from the other coordinates and may be treated classically. Note that by
treating the motion classically, quantum effects are specifically neglected, such as tunneling through



the barrier or quantum reflections, which you have encountered in your Quantum Chemistry course.
This leads to some of the shortcomings of Transition State Theory.

The average time &t for a transition state to traverse the dividing surfaces is

é

o=t

where (vg) is the average velocity in the reaction coordinate s. Under the assumption of quasi-
equilibrium, we can calculate this average velocity from a Boltzmann distribution.

. _ﬂs”sg
[~ vee 2kBTdy, 2kgT
0 B
(Us> = 2 =
psv T

0 —
fo e ZRBTde

Here, pg is the reduced mass of the reaction coordinate s. Note that we integrate from zero to infinity
because we only consider forward moving transition states. Moreover, note that we have already
performed this calculation in Section 4.2 in the context of the kinetic theory of gases and that the
expression obtained corresponds the mean absolute velocity of a one-dimensional ideal gas. We obtain

ot =i= (vs) _ 1 |2kgT
ot 1) 6| mug

which gives us the rate constant of the reaction

1 1 [2ksT QFf ., _Eo
kysy = —kTK* = — _Bﬂe RaT
2 26 | mus Qa0p

Since we have assumed that we can separate the translational motion in the reaction coordinate from all
other degrees of freedom, the total energy must be a sum of the translational energy of the reaction
coordinate and the vibrational energy contained in all other modes. In this case, the total partition

function of the transition state Qt*ot can be written as the product of the partition function of the reaction
coordinate Qg and that of the remaining modes Q¥.

o
Qfor = QsQ*
In chapter 7, we have encountered several similar cases. For example, the energy of a particle in a three-
dimensional box is the sum of the energies of three separate particles in one-dimensional boxes.
Therefore, the partition function can be written as the product of the partition functions of three particles

in one-dimensional boxes.

Here, we can easily see that the partition function of the reaction coordinate Q¢ must be the translational
partition function of a particle of mass i, in a one-dimensional box of length § (Appendix B).

6
Qs =5V 2musksT

After substitution, we obtain the Transition State Theory rate constant



kyT QF _Fo
kpor = BT _ &

h QaQs

Note that both the distance of the dividing surfaces § as well as the reduced mass of the reaction
coordinate pg have disappeared from the final equation. In order to determine the Transition State
Theory rate constant krst, we need to calculate the partition functions of both the reactants and the
transition state. In particular, we must have knowledge of the vibrational frequencies and the rotational
constants (or moments of inertia). For the transition state, such information is usually hard to obtain
and is therefore frequently taken from quantum chemical calculations.

In the expression for kg given above, R%T is called the frequency factor and has a value of 6.25 -

1012 s71 at 300 K. It is of the same order of magnitude as the encounter frequency of molecules in
liquids and comparable to the vibrational frequency of slow molecular vibrations (300 K corresponds
to 200 cm™), but too low if compared to the timescale of a molecular collision.

Finally, we can relate the energy E, to the Arrhenius activation energy E,. According to Tolman’s
theorem, the activation energy of a reaction E, is equal to the difference between the mean energy of
the reacting molecules (ER) and the mean energy of all molecules (E).

Eq = (Eg) —(E)

In the context of Transition State Theory, the mean energy of the reacting molecules (Eg) is the sum of
the energy E, and the mean energy of the transition state.

Transition State Theory successfully describes a large number of thermal rate constants. Its
shortcomings arise from the classical treatment of motion through the transition state. Quantum
mechanically, the transition state cannot be treated as a definite configuration of nuclei moving at a
given velocity. Instead, the uncertainty principle demands that the transition state is delocalized in
space. Similarly, it cannot have an infinitesimally short lifetime at a finite energy uncertainty. We also
assume that the potential of the reaction path is flat when we treat the motion along the reaction path as
a free translation. This is not the case. Instead, the reaction path leads over a barrier, so that tunneling
and quantum reflections can occur, which a classical theory cannot account for. Finally, the reaction
path is usually curved, so that it cannot be decoupled from the other degrees of freedom. Therefore, it
is not possible to factor the partition function of the transition state into one for the translation and one
for the other degrees of freedom.

8.3 THERMODYNAMIC FORMULATION
We can reformulate the Transition State Theory rate constant in thermodynamic terms, so that we do

not need to deal with partition functions, which is sometimes more convenient. Above, we have seen
that

k :kB_TQ—#e_kEB‘fOTsz_T
P17 h Q408 h

with the equilibrium constant for the formation of the transition state K*. We can associate this
equilibrium constant with a molar standard Gibbs free energy

AG* = —RT InK#

to obtain



kgT _AG* kgT AS*O  AHTO
kTST=Te RT =Te R e RT

Here, the superscript “0” refers to the standard state. We obtain the rate constant in terms of a standard
enthalpy and entropy of activation. We can compare this equation to the Arrhenius equation

_Eq
k = Ae RT
with the activation energy

dlnk
dT

E, = RT?

For the Transition State Theory rate constant, we obtain

dInkpsr dInK*
RT? ———— = RT + RT?
dT + dT

Furthermore, the Gibbs-Helmholtz equation tells us that

dInk* AE*
dT ~ RT?

so that
E, = RT + AE*
We can relate this to the activation enthalpy AH*°, assuming constant pressure
AH*® = AE*® 4+ pAV*® = E, — RT + pAV*°

where AV* is the activation volume. We can subsitute this into the expression for the Transition State
Theory rate constant to obtain

As*o
kgT (“T) _pAV¥ E,
e e

krsy = — RT e RT

We find that the Arrhenius prefactor becomes

o
kgT (1+AST> _pAv¥e
e RT

For a reaction in solution the activation volume will be approximately zero, AV*® = 0. This is also the
case for a unimolecular gas phase reaction. In this case, the expression simplifies to

kBT (1+AST;#O> Ea

ST = ——e€ e RT
h

and we can identify the Arrhenius prefactor 4 with

As*o
kBTe(1+ SI; >




If instead, we are for example dealing with a gas phase reaction other than a unimolecular reaction, then
for ideal gases,

pAV*° = An*RT

where An* is the change of the particle number in the transition state, e.g. An* = —1 for a bimolecular
reaction. In this case, we find

o
kT (1-an¥4237) &,
Koren = B R =%
TST __h € e

so that we can identify the Arrhenius factor with



APPENDIX A — THE GAMMA FUNCTION

In the context of the kinetic theory of gases and unimolecular reaction dynamics, we frequently
encounter integrals of the type [ OOO x?e *dx and [ OOO x™e~%*"dx, which we can solve by means of the
gamma function.

(00

rz+1) = J x’e *dx
0

For any real z, integration by parts gives

J xZe *dx = J —x%e ™ + zx* le Xdx = ZJ xZ e *dx
0 0 0
or
I'(z+1)= zZI'(z)

In the special case of z being a positive integer, we find

In+1) =n!
Moreover, useful relationships are
r=1
1
rf{=) =
z)=v=

The gamma function also allows us to solve gaussian integrals of the type | 000 x™e~%*" dx. We substitute

y % 1 -1
ax? =y, sothat x = (E) and dx = > (ay)"2dy and

J x"e~ %’ dx = la_nglj n;l e Vdx = la_ngl r <n * 1)
=2 y =2 2
0

0



APPENDIX B —
THE TRANSLATIONAL, ROTATIONAL, AND VIBRATIONAL PARTITION FUNCTIONS

Here we derive expressions for the translational, rotation, and vibrational partition functions.

Translational partition function:

. S . . . h? .
The eigenstates of the particle in a one-dimensional box have energies €, = SmaZ n?, with the quantum

number n = 1, 2, ... and the length of the box a.

For the corresponding partition function, we obtain

[e) (e ] hznz

_fn_ _€n 7 a
Qtrans 1D — 2 e kBT ~ e keTdn = e 8ma‘kpTdp = Ew/znkaT

n 0 0

The energy of a particle in a three-dimensional box is the sum of three energies for each dimension
€ =€n, T €n, + €p,

Therefore, the translational partition function for motion in three dimensions is simply the product of
three one-dimensional partition functions

a
Qtrans = qgrans,lD = (E\/ 27kaBT)

3y 3
=73 (2mmkgT)2

Rotational partition function:

2
The eigenstates of the rigid rotor have energies €; = % J(J +1) = hecBJ(J + 1), with the rotational

quantum number J = 0,1, 2, ..., the moment of inertia | = }'; m;r%, and the rotational constant B. The
degeneracy of the levels is g; = 2] + 1.

oo

_heBJ(J+1)
Grov = ) (2] + e o

J=0

For hcB < kT, we can approximate

hcBJ(J+1) kBT

Groe = [@+ 0T BT qy =12
0

For symmetric molecules, we have to divide the rotational partition function q,.,; by the symmetry
number o.

B 1kgT
Qrot = o heB



The symmetry number is equal to the number of ways to bring the molecule into an equivalent
configuration through proper rotations. This is essentially the number of proper rotation operations
(including the identity E) of the point group of the molecule. For linear molecules of point group Dgp,
such as CO,, o = 2.

Further examples. HCl, 0 = 1; NH3, 0 = 3; CHy4, 0 = 12.

Vibrational partition function:

The eigenstates of the harmonic oscillator have energies €, = (v + E) hw with the vibrational quantum

number v = 0,1, ... and w = \/%, where the k is the spring constant, and u the reduced mass of the

oscillator.
1
®© _(v+§)hw © _(v+1)x
v=0 v=0
hw . . . .
where x = P We simplify this expression as follows.
B oo
—(U+§)x
Quive ™" = 2 e 2
v=0

x
Qvib — qvibe_x = Qvib (1 - e—x) =e 2

We isolate q,,;;, and finally obtain




