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1 BASIC CONCEPTS OF KINETICS 
 
Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 1. (Prentice Hall, 
1989). 
 
 
What is ‘Chemical Kinetics’? 
 

 
 

 
 
 

Chemistry 
– the science of chemical compounds (composed of atoms) and their transformations 

Phenomenological Thermodynamics 
• equilibrium properties of matter 
• concepts: Free Energy G, 

equilibrium constant K, … 
• ensemble averaged properties 

Macroscopic or Phenomenological Kinetics 
• chemical transformations 
• concepts: rate constant k, 

molecularity and order of a reaction 
• ensemble averaged picture of 

reactions  

Statistical Thermodynamics 
• thermodynamics derived from an 

atomic/molecular picture 

Microscopic Kinetics or Reaction Dynamics 
• molecular origins of chemical 

reactions, reaction mechanisms 

The chemical bond Dynamics of the chemical bond 

Quantum Mechanics 

Time-independent Schrödinger equation Time-dependent Schrödinger equation 

𝐻Ψ = 𝐸Ψ 𝑖ℏ
∂Ψ
∂t

= 𝐻Ψ 

 
  

Co

N N

N N

Cl

Cl

+

Cl Co

N N

N N

Cl

H2O

++

2Cl
H2O
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1.1 SOME DEFINITIONS 
 
Chemical reactions can be homogeneous (occurring in only one phase) or heterogeneous (occurring in 
more than one phase). 
 
Chemical reactions can be irreversible 
 

2H! + O! → 2H!O 
 
or reversible, i.e. having a forward and reverse reaction 
 

H! + I! ⇄ 2HI 
 
Reactions occurring in a single step are called elementary reactions. The reaction of hydrogen and 
oxygen involves several of these elementary reactions, such as 
 

O+ H! → OH+ H 
 
Reactions consisting of several such steps and therefore involving intermediates are called complex, 
composite, or stepwise. The reaction of hydrogen and oxygen is such a complex reaction. 
 
For a stoichiometric equation 
 

𝑎A+ 𝑏B → 𝑐C+ 𝑑D 
 
we can write down the rates for the consumption of the reactants or creation of the products 
 

𝑣A = −
𝑑[A]
𝑑𝑡

 
 

𝑣C =
𝑑[C]
𝑑𝑡

 
 
We define the rate of the reaction 𝑅 as 
 

𝑅 = −
1
𝑎
𝑑[A]
𝑑𝑡

= −
1
𝑏
𝑑[B]
𝑑𝑡

=
1
𝑐
𝑑[C]
𝑑𝑡

=
1
𝑑
𝑑[D]
𝑑𝑡

=
𝑑x
𝑑𝑡

 
 
where 𝑅 has units of [concentration/time]. Here, we have also defined the extent of the reaction per unit 
volume 𝑥 = [A]$[A]!

%
= ⋯, where 𝑥 has units of [concentration]. We assume that the volume is constant. 

 
It is sometimes convenient to define the extent of the reaction 𝜉 = 𝑥𝑉 with 
 

𝜉 = −
1
𝑎
<𝑛A(𝑡) − 𝑛A(0)A =

1
𝑐
<𝑛C(𝑡) − 𝑛C(0)A = ⋯ 

 
where 𝑛i is the molar quantity of compound 𝑖 and the extent of the reaction 𝜉 has units of [mol]. Note 
that for constant volume 
 

𝑅 =
1
𝑉
𝑑ξ
𝑑𝑡
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1.2 ORDER AND MOLECULARITY OF A REACTION 
 
We can distinguish elementary reactions based on their molecularity, i.e., the number of reactants 
involved. Unimolecular reactions are for example decomposition reactions, like 
 

N!O& → 2NO! 
 
Bimolecular reactions involve two reactants, such as 
 

O + H! → OH+ H 
 
Termolecular (trimolecular) reactions are for example encountered when a third collision partner is 
involved 
 

A + B +M → AB +M 
 
Reactions with four or more reactions are rare because of the low probability of four species colliding. 
 
It is quite obvious that for an elementary bimolecular reaction, the rate of the reaction must be 
proportional to the concentration of both reactants, so that we obtain the rate equation 
 

𝑅 = 𝑘[A][B] 
 
where 𝑘 is the rate coefficient. 
More generally, one frequently finds that the experimental rate of a reaction is proportional to powers 
of the concentrations of different species involved. This allows us to write down an empirical rate 
equation, for example 
 

𝑅 = 𝑘[A]'[B]( 
 
and the powers 𝑚 and 𝑛 are the order of the reaction with respect to the species A and B, respectively. 
The overall order 𝑝 of the reation is 𝑝 = 𝑚 + 𝑛. In general, 
 

𝑅 = 𝑘K𝑐)
(" 	

)

 

 
and 
 

𝑝 =M𝑛)
)

 

 
The rate coefficient 𝑘 has the units [concentration]-(p-1)[time]-1. 
 
For elementary reactions, the order of the reaction is equal to the molecularity. However, for complex 
reactions, the orders are in general experimentally determined and may even be negative (inhibition) or 
fractional (indication of complex reaction). Moreover, the rate equation may not only contain the 
concentrations of reactants, but also those of products, intermediates, or other species involved, such as 
catalysts, and the rate equation may take a more complex mathematical form. 
 
An example: 
 

H! + Br! → 2HBr 
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𝑑[HBr]
𝑑𝑡

= 𝑘[H!][Br!]
*
! 

 
And under different reaction conditions 
 

𝑑[HBr]
𝑑𝑡

=
𝑘[H!][Br!]

*
!

1 + 𝑘′[HBr]
 

 
Here, the constants 𝑘 and 𝑘′ are phenomenological coefficients and should be referred to as rate 
coefficients, while the term rate constant is usually reserved for the coefficients in elementary reactions. 
 
 
1.3 INTEGRATED REACTION RATE LAWS 
 
By integrating the rate equation, which is an ordinary differential equation, we obtain the concentrations 
as a function of time. 
 
1.3.1 ZERO-ORDER REACTIONS 
 
Zero-order reactions can be for example encountered for cases of heterogeneous catalysis on surfaces. 
 

𝑅 = −
𝑑[A]
𝑑𝑡

= 𝑘[A]+ = 𝑘 
 

𝑑[A] = −𝑘𝑑𝑡 
 

P 𝑑[A]

[A]#

[A]!

= −𝑘 P 𝑑𝑡
-

-!.+

 

 
[A]- = [A]+ − 𝑘𝑡 

 
 

 
 
 
1.3.2 FIRST-ORDER REACTIONS 
 
Examples of first-order reactions are isomerizations, for example, the first-order unimolecular 
isomerization of methyl isocyanide 
 

MeNC → MeCN 
 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

k t

[A
]
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A → B 
 

𝑅 = −
1
𝑎
𝑑[A]
𝑑𝑡

= 𝑘[A]* 
 

𝑑[A]
𝑑𝑡

= −𝑘[A] 
 

P
𝑑[A]
[A]

[A]#

[A]!

= −𝑘 P 𝑑𝑡
-

-!.+

 

 

ln
[A]-
[A]+

= −𝑘𝑡 

 
[A]- = [A]+𝑒$/- 

 
 

  
 
We can define the decay time 𝜏 of the reaction 
 

𝜏 =
1
𝑘

 
 
as well as the half-life 𝑡$

%
 at which [A]-$

%
= *

!
[A]+ 

 

𝑡*
!
=
ln 2
𝑘

 

 
 
1.3.3 SECOND-ORDER REACTIONS 
 
First case: two identical reactants. 
 

2A → product(s) 
 

𝑅 = −
1
2
𝑑[A]
𝑑𝑡

= 𝑘[A]! 
 

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k t

A
A

0
t

0 1 2 3 4 5
2.0

1.5

1.0

0.5

0.0

t

ln
A

A
0

t
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P
𝑑[A]
[A]!

[A]#

[A]!

= −2𝑘 P 𝑑𝑡
-

-!.+

 

 
1
[A]-

=
1
[A]+

+ 2𝑘𝑡 

 

[A]- =
[A]+

1 + 2[A]+𝑘𝑡
 

 
 
 

[A]-
[A]+

=
1

1 + 2[A]+𝑘𝑡
 

 

[A]+
[A]-

= 1 + 2[A]+𝑘𝑡 

 
 
 
Second case: two different reactants. 
 

A+B → product(s) 
 

𝑅 =
𝑑x
𝑑𝑡
= −

𝑑[A]
𝑑𝑡

= 𝑘[A][B] = 𝑘([A]+ − 𝑥)([B]+ − 𝑥) 
 

P
𝑑x

([A]+ − 𝑥)([B]+ − 𝑥)

0#

+

= 𝑘 P 𝑑𝑡
-

-!.+

 

 
We solve the integral on the left by transforming the rational fraction of polynomials using the method 
of partial fractions. We set 
 

1
([A]+ − 𝑥)([B]+ − 𝑥)

=
𝛼

[A]+ − 𝑥
+

𝛽
[B]+ − 𝑥

 

 
𝛼([B]+ − 𝑥) + 	𝛽([A]+ − 𝑥) = 1 

 
and find 
 

𝛼 = −𝛽 =
1

[B]+ − [A]+
 

 
so that 
 

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

A 0 k t

A
A

0

0 1 2 3 4 5
0

2

4

6

8

10

A 0 k t

A
0

A
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P
𝑑x

([A]+ − 𝑥)([B]+ − 𝑥)

0#

+

=
1

[A]+ − [B]+
`P

𝑑x
𝑥 − [A]+

0#

+

−P
𝑑x

𝑥 − [B]+

0#

+

a	

=
1

[A]+ − [B]+
ln
([A]+ − 𝑥-)[B]+
([B]+ − 𝑥-)[A]+

 

 
1

[A]+ − [B]+
ln
[A]-[B]+
[B]-[A]+

= 𝑘𝑡 

 

𝑥- =
[A]+[B]+<𝑒[A]!/- − 𝑒[B]!/-A
[A]+𝑒[A]!/- − [B]+𝑒[B]!/-

 

 

𝑥- =
[A]+[B]+<𝑒[A]!/- − 𝑒[B]!/-A
[A]+𝑒[A]!/- − [B]+𝑒[B]!/-

 

 

1
[A]+ − [B]+

ln
[A]-[B]+
[B]-[A]+

= 𝑘𝑡 

 
 
 
1.3.4 REACTIONS OF GENERAL ORDER 
 
There are no known reactions of higher than third order. For completeness, we nevertheless develop the 
treatment for reactions that are of nth order in one reactant: 𝑎	A → product(s) 
 

𝑅 = −
1
𝑎
𝑑[A]
𝑑𝑡

= 𝑘[A]( 
 

1
𝑛 − 1

b
1

[𝐴]-($*
−

1
[𝐴]+($*

d = 𝑎𝑘𝑡 

 
In order to deduce the order of a reaction, one can use a van’t Hoff plot, a log-log plot of the rate 
equation, the slope of which gives the order 𝑛. 
 

ln b−
𝑑[A]
𝑑𝑡

d = 𝑛 ln[A] + ln 𝑎𝑘 

 

0 1 2 3 4 5
0.0

0.2
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0.6

0.8

1.0

t

co
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[A]t[A]t
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3.5
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1.5
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0.0
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ln
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Note that it is also possible to plot the logarithm of the initial rate of disappearance ln e− 2[A]

2-
fg
-.+

 as a 
function of the logarithm of the initial concentration ln[𝐴]+. In this case, several separate experiments 
are necessary. 
 
The reaction order can also be determined by measuring reaction half-lives. We have already seen 
that for a first-order reaction the half-life 𝑡$

%
 is independent of the concentration of the reactant. 

 

𝑡*
!
=
ln 2
𝑘

 

 
 
As derived above, the integrated rate law for higher-order reactions is 
 

b
1

[𝐴]-($*
−

1
[𝐴]+($*

d = 𝑛(𝑛 − 1)𝑘𝑡 

 
Setting [𝐴]- =

*
!
[𝐴]+ and 𝑡 = 𝑡$

%
, we obtain 

 

𝑡*
!
=

(2($* − 1)
𝑛(𝑛 − 1)𝑘[𝐴]+($*

 

 
Thus, a log-log plot of the half-life 𝑡$

%
 versus the initial concentration [𝐴]+ gives a straight line with 

slope −(𝑛 − 1). 
 
 
1.4 TEMPERATURE DEPENDENCE OF RATE CONSTANTS: THE ARRHENIUS EQUATION 
 
The Arrhenius equation is an empirical expression for the dependence of a rate constant 𝑘(𝑇) on the 
absolute temperature 𝑇 
 

𝑘(𝑇) = 𝐴𝑒$
3act
45  

 
Here, 𝑅 is the ideal gas constant. The quantity 𝐴 is called the pre-exponential factor or frequency factor, 
which may be slightly temperature-dependent. For a first-order reaction, 𝐴 is has units of [𝑠$*], and for 
a reaction of order 𝑝, its units are jconcentration$(7$*)𝑠$*m. 
The activation energy 𝐸act [𝐽	𝑚𝑜𝑙$*] can be thought of as the minimum amount of energy a reactant 
must possess to react. 
 

0 1 2 3 4 5
0

2

4

6

8

10

log A
lo
g

d
A

dt

n = 1n = 1

n = 2n = 2
n = 3n = 3
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In fact, using a Boltzmann distribution, we find that the fraction of molecules with an energy larger than 

𝐸act is proportional to 𝑒$
)act
*+ . The activation energy is usually positive, but can be negative, for example 

if in a complex reaction, a weakly bound reactive intermediate is formed, such as in the recombination 
of iodine atoms. 
 

I + M → IM 
 

IM + I → I! +M 
 
The activation energy and prefactor can be obtained from an Arrhenius plot of ln 𝑘 vs 1/	𝑇. 
 

ln 𝑘 = ln𝐴 −
𝐸act
𝑅𝑇

 
 
 

 
 
If we consider a forward and reverse reaction in equilibrium, we can relate the activation energy to a 
reaction enthalpy and the equilibrium constant, for example 
 

A + B
𝑘forward
⇄

𝑘reverse
C + D 

 
In equilibrium, 
 

𝑘forward[A][B] = 𝑘reverse[C][D] 
 

𝐾eq =
[C][D]
[A][B]

=
𝑘forward
𝑘reverse

=	
𝐴forward
𝐴reverse

𝑒$
(3act,	forward$3act,	reverse)

45 =
𝐴forward
𝐴reverse

𝑒$
EF!
45  
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2 COMPLEX REACTIONS 
 
Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 2. (Prentice Hall, 
1989). 
 
While in the previous chapter, we have mostly looked at simple elementary reactions, we will here 
study the kinetics of complex reactions. Our goal is always to find a solution to the (coupled) rate 
equations. From the integrated equations, we can then derive insights about the behavior of the reactive 
system. 
 
We will also look at methods that frequently allow us to obtain approximate analytical solutions for 
complex reactions. Briefly, we will look at some analytical, as well as numerical tools for solving rate 
equations. 
 
2.1 REVERSIBLE REACTIONS 
 
In reversible reactions, a forward reaction leads to the formation of products, which can undergo a 
reverse reaction to reform the reactants. In the simplest case of a first-order reaction (e.g. cis-trans 
isomerization of dichloroehtylene) 
 

A
𝑘1
⇄
𝑘-1
B 

 
we obtain two linear ODEs 
 

𝑑[A]
𝑑𝑡

= −𝑘1[A] + 𝑘-1[B] 
 

𝑑[B]
𝑑𝑡

= 𝑘1[A] − 𝑘-1[B] 
 
We again use the extent of the reaction per unit volume 𝑥 = [A]+ − [A] = [B] − [B]+ to simplify the 
description of the problem. 
 

𝑑𝑥
𝑑𝑡

= 𝑘1([A]+ − 𝑥) − 𝑘-1([B]+ + 𝑥) = −(𝑘* + 𝑘$*)𝑥 + [𝑘1[A]+ − 𝑘-1[B]+] 
 
We substitute to simplify the expression 
 

𝑑𝑥
𝑑𝑡

= −𝑘𝑥 + 𝑐 
 

P
𝑑x

−𝑘𝑥 + 𝑐

0#

+

= P𝑑𝑡
-

+

 

 

−
1
𝑘
P

𝑑x
𝑥 − 𝑐

𝑘

0#

+

= −
1
𝑘
ln u

𝑥- −
𝑐
𝑘

− 𝑐𝑘
u = 𝑡 

 
We note that e𝑥- −

I
/
f / e− I

/
f is positive and thus find for the extent of the reaction per unit volume 𝑥- 
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𝑥- =
𝑐
𝑘
(1 − 𝑒$/-) 

 
We can see that for 𝑡 → ∞, 𝑥- approaches an equilibrium value 𝑥eq with 
 

𝑥eq = lim
-→K

𝑥- =
𝑐
𝑘
=
𝑘1[A]+ − 𝑘-1[B]+
(𝑘* + 𝑘$*)

 

 
So that we can write 
 

𝑥- = 𝑥eq(1 − 𝑒$/-) 
 
We see that the extent of the reaction asymptotically approaches its equilibrium value 𝑥eq. With [A]eq =
[A]+ − 𝑥eq and [B]eq = [B]+ + 𝑥eq, we can also write 
 

[A] = [A]eq + 𝑥eq𝑒$/- 
 

[B] = [B]eq − 𝑥eq𝑒$/- 
 
 

 
 
We can relate the rate constants 𝑘* and 𝑘$* to the equilibrium constant 𝐾eq of the reversible reaction. 
In fact, we have already done so in section 1.4 for the Arrhenius rate constants of reversible reactions. 
In equilibrium, the principle of detailed balance must hold, i.e. the forward and reverse reaction must 
occur at the same rate 
 

𝑘1[A]eq = 𝑘-1[B]eq 
 
so that 
 

𝐾eq =
[B]eq
[A]eq

=
𝑘1
𝑘-1

 

 
 
2.2 CONSECUTIVE REACTIONS 
 
Consecutive reactions are sequential irreversible reactions. The following reaction sequence represents 
the simplest case of a first order consecutive reaction with two steps. 
 

A
𝑘1
→
	
B
𝑘2
→
	
C 
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An example is the radioactive decay of uranium to plutonium 
 

UM!
!NM → NpMN

!NM → PuM&
!NM  

 
𝑑[A]
𝑑𝑡

= −𝑘*[A] 
 

𝑑[B]
𝑑𝑡

= 𝑘*[A] − 𝑘![B] 
 

𝑑[C]
𝑑𝑡

= 𝑘![B] 
 
Compound A simply undergoes unimolecular decay. 
 

[A] = [A]+𝑒$/$- 
 
By substituting into the equation for 𝑑[B]/𝑑𝑡, we obtain 
 

𝑑[B]
𝑑𝑡

= 𝑘*[A]+𝑒$/$- − 𝑘![B] 
 

𝑑[B]
𝑑𝑡

+ 𝑘![B] = 𝑘*[A]+𝑒$/$- 
 
This is an inhomogeneous linear ODE, whose solution is the sum of the general solution of the 
homogeneous ODE and a particular solution of the inhomogeneous ODE. 
 
For the general solution of the homogeneous ODE, we find 
 

𝑑[B]
𝑑𝑡

+ 𝑘![B] = 0 
 

[B]O = [B]O,+𝑒$/%- 
 
where [B]O,+ is a free parameter, making this is a general solution. 
 
We guess a particular solution for the inhomogeneous ODE, which we choose to contain the 
inhomogeneous term 
 

[B]7 = [B]7,+𝑒$/$- 
 
In order to determine the constant [B]7,+, we subsitute into the inhomogeneous ODE 
 

−𝑘*[B]7,+𝑒$/$- + 𝑘![B]7,+𝑒$/$- = 𝑘*[A]+𝑒$/$- 
 

[B]7,+ =
𝑘*[A]+
𝑘! − 𝑘*

 

 
Finally, we add the general homogeneous and the particular inhomogeneous solutions. 
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[B] = [B]O,+𝑒$/%- +
𝑘*[A]+
𝑘! − 𝑘*

𝑒$/$- 

 
With the boundary conditions [B]+ = [C]+ = 0, we obtain 
 

[B] =
𝑘*[A]+
𝑘! − 𝑘*

(𝑒$/$- − 𝑒$/%-) 

 
And with [A] + [B] + [C] = [A]+, we find 
 

[C] = [A]+(1 +
𝑘*𝑒$/%- − 𝑘!𝑒$/$-

𝑘! − 𝑘*
) 

 

  
 
 
2.3 PARALLEL REACTIONS 
 
In a parallel reaction, the same species participates in several different simultaneous processes. We will 
look at two simple examples. 
 

First order decay to different products. 
 

 
We can easily see that compound A decays with a first-order rate law. 
 

[A]t = [A]0𝑒$(/BR/C)- 
 

𝑑[B]t
𝑑𝑡

= 𝑘B[A]t = 𝑘B[A]0𝑒$(/BR/C)- 
 
With [B]0 = [C]0 = 0, 
 

[B]t =
𝑘B

(𝑘B + 𝑘C)
[A]0(1 − 𝑒$(/BR/C)-) 

 

[C]t =
𝑘C

(𝑘B + 𝑘C)
[A]0(1 − 𝑒$(/BR/C)-) 

 
Note that the branching ratio [B]t[C]t

 is independent of time 
 

[A]/[A]0

[B]/[A]0

[C]/[A]0

[A]/[A]0

[C]/[A]0

[B]/[A]0

A
B

C

kB

kC
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[B]t
[C]t

=
𝑘B
𝑘C

 

 
 
 
 
 
 

First order decay to the same product. 
 

 
Quiz: What are the integrate rate laws for this process? 
 
 
2.4 APPROXIMATE SOLUTIONS TO COMPLEX REACTIONS 
2.4.1 STEADY-STATE APPROXIMATION 
 
For many complex reaction networks, analytic solutions cannot be obtained. However, by making 
suitable assumptions, one can sometimes find very useful approximate solutions that allow for good 
predictions. Such is the case for the steady-state approximation, which can be applied when 
intermediates A) are present only in small quantities. In a set of coupled differential equations, the time 
derivative of this intermediate will be negligible compared with other time derivatives, so that we can 
approximate 
 

𝑑[A)]
𝑑𝑡

≈ 0 
 
Example 1. We will apply this approximation to the first order consecutive reaction with two steps that 
we already solved above. 
 

A
𝑘1
→
	
B
𝑘2
→
	
C 

 
We assume that the concentration of the intermediate B under steady-state conditions [B]S is always 
small, which will be the case if 𝑘2 ≫ 𝑘1, so that B reacts away faster than it is formed. 
 

𝑑[B]S
𝑑𝑡

= 𝑘*[A] − 𝑘![B]S = 0 
 

[B]S =
𝑘*
𝑘!
[A] =

𝑘*
𝑘!
[A]+𝑒$/$- 

 
[C] = [A]+(1 − 𝑒$/$-) 

 
Note that we still find a time dependence for [B]S, even though we assumed 2[B]S

2-
= 0. We can however 

verify that [B]S/[A] =
/$
/%
≪ 1, which confirms our initial assumption that [B] is only present in small 

quantities. Product C builds up as if B was not present and we simply had a first order reaction A
𝑘1
→
	
C. 

 
 

C
A

B

kA

kB
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Also note that the exact solution that we obtained above without making the steady-state approximation 
leads to the same result in the limit 𝑘2 ≫ 𝑘1. 
 

[B] =
𝑘*[A]+
𝑘! − 𝑘*

<𝑒$/$- − 𝑒$/%-A ≈
𝑘*
𝑘!
[A]+𝑒$/$- 

 

[C] = [A]+ b1 +
𝑘*𝑒$/%- − 𝑘!𝑒$/$-

𝑘! − 𝑘*
d ≈ [A]+(1 − 𝑒$/$-) 

 
 

 
 
Example 2. A consecutive reaction with a reversible first step can be described by the following 
sequence. 
 

A
𝑘1
⇄
𝑘-1
B
𝑘2
→
	
C 

 
Such behavior is for example encountered in enzyme catalyzed reactions or thermally activated 
reactions. The rate equations are 
 

𝑑[A]
𝑑𝑡

= −𝑘*[A] + 𝑘$*[B] 
 

𝑑[B]
𝑑𝑡

= 𝑘*[A] − 𝑘$*[B] − 𝑘![B] 
 

𝑑[C]
𝑑𝑡

= 𝑘![B] 
 
While this problem can be solved analytically, we will here apply the steady-state approximation, 
assuming that [B] is small, so that 
 

𝑑[B]S
𝑑𝑡

= 𝑘*[A] − (𝑘$* + 𝑘!)[B]S = 0 
 

[B]S =
𝑘*

𝑘$* + 𝑘!
[A] 
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We can see that our approximation is only satisfied if 𝑘* ≪ 𝑘$* + 𝑘!, i.e., intermediate B reacts away 
much faster than it is formed and therefore has a small concentration. We find the other concentrations 
by substitution 
 

𝑑[A]
𝑑𝑡

= −𝑘*[A] + 𝑘$*[B]S = }−𝑘* +
𝑘*𝑘$*
𝑘$* + 𝑘!

~ [A] = −
𝑘*𝑘!

𝑘$* + 𝑘!
[A] 

 
𝑑[C]
𝑑𝑡

= 𝑘![B]S =
𝑘*𝑘!

𝑘$* + 𝑘!
[A] 

 
We see that the steady-state approximation leads to a simple first order reaction 
 

A
𝑘eff
→
	
C 

 
with 𝑘eff =

/$/%
/9$R/%

. 
 
Within our assumption that 𝑘* ≪ 𝑘$* + 𝑘!, we can distinguish two limiting cases. 
 

If 𝑘! ≫ 𝑘$*, then 𝑘eff ≈ 𝑘* and the reaction effectively becomes A
𝑘1
→
	
C. In this case, the first step of the 

sequence, A
𝑘1
→
	
B is the bottleneck of the reaction. We call this step rate-limiting, rate-determining, or 

rate-controlling. 
 
 

If instead the second step B
𝑘2
→
	
C is rate-limiting, i.e. 𝑘$* ≫ 𝑘!, then 

 

𝑘eff =
𝑘*𝑘!
𝑘$*

= 𝐾𝑘! 

 
with 𝐾 = /$

/9$
. In this case, the second step is so slow that A and B are in a quasi-equilibrium 

 

A
𝑘1
⇄
𝑘-1
B 

 
with equilibrium constant 𝐾 = [B]

[A]
= /$

/9$
. This quasi-equilibrium is called pre-equilibrium. 

 
For the rate equation of C we find 
 

𝑑[C]
𝑑𝑡

= 𝑘eff[A] =
𝑘*𝑘!
𝑘$*

[A] = 𝐾𝑘![A] 
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A
𝑘1
→
	
B rate-limiting, 𝑘! ≫ 𝑘$* B

𝑘2
→
	
C rate-limiting, 𝑘$* ≫ 𝑘! 

  
 
 
 
2.4.2 PSEUDO-FIRST-ORDER METHOD 
 
The pseudo-first-order method is an experimental technique for simplifying the analysis of complex 
reactions involving several steps. It consists of flooding a reaction, i.e. supplying all reactants in excess 
except one, so that the reaction becomes pseudo-first-order in this one reactant. 
Consider for example the competing reactions 
 

A* + A!
𝑘1
→
	
products 

A* + AN
𝑘2
→
	
products 

 
with the second-order rate equations 
 

𝑑[A!]
𝑑𝑡

= −𝑘*[A*][A!] 
 

𝑑[AN]
𝑑𝑡

= −𝑘![A*][AN] 
 
If we supply [A*] in large excess 
 

[A*] ≫ [A!] and [A*] ≫ [AN] 
 
the concentration of [A*] will remain almost constant over the course of the reaction 
 

[A*] ≈ const. 
 
so that 
 

𝑑[A!]
𝑑𝑡

= −𝑘*[A*][A!] ≈ −𝜅*[A!] 
 

𝑑[AN]
𝑑𝑡

= −𝑘![A*][AN] ≈ −𝜅![AN] 
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We can see that the reactions become pseudo-first-order, making the complex reaction sequence simpler 
to analyze. 
 
 
2.5 EXACT ANALYTICAL SOLUTION METHODS 
2.5.1 MATRIX METHOD: LINEAR ODES 
 
The matrix or determinant method is suitable for systems of linear ODEs, i.e. coupled differential 
equations of the type 
 

𝑑[A)]
𝑑𝑡

=M𝑘)UjAUm
U

 

 
which we can rewrite as 
 

𝑎V̇ =M𝑘)U𝑎U
U

 

 
Note that no terms 𝑎U( with 𝑛 > 1 appear, nor any cross terms 𝑎U𝑎/. 
 
As an example, we will look again at the first order consecutive reaction with two steps 
 

A*
𝑘1
→
	
A!
𝑘2
→
	
AN 

 
We can write the coupled differential equations in matrix form as follows 
 

�
𝑎*̇
𝑎!̇
𝑎Ṅ
� = �

−𝑘* 0 0
𝑘* −𝑘! 0
0 𝑘! 0

��
𝑎*
𝑎!
𝑎N
� 

 
or 

𝒂̇ = 𝑴𝒂 
 
The idea of the matrix method is that this system of equations should be easier to solve in a different 
basis in which the matrix 𝑴 containing the rate coefficients is diagonal. In that case, we obtain three 
independent first order rate equations that we know how to solve. 
 
The diagonal matrix 𝚲, is related to the matrix 𝑴 through 
 

𝑴𝑿 = 𝑿𝚲 
 

𝑿$𝟏𝑴𝑿 = 𝚲 
 
where 𝑿 is a matrix, whose columns correspond to the eigenvectors 𝒙𝒊 of 𝑴, and 𝑿$𝟏 is the inverse of 
𝑿. The diagonal elements of the matrix 𝚲 are corresponding eigenvalues λY of 𝑴. After transformation, 
we obtain 
 

𝑿$𝟏𝒂̇ = 𝚲	𝑿$𝟏𝒂 
 
With 	𝑿$𝟏𝒂 = 𝒂′, this becomes 
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𝒂′̇ = 𝚲𝒂′ 
 
Since 𝚲 is diagonal, we end up with three independent first order equations 
 

𝑎VŻ = λY𝑎)Z 
 
with solutions 
 

𝑎)Z = 𝑐)𝑒[:- 
 
or 
 

𝒂Z = �
𝑐*𝑒[$-

𝑐!𝑒[%-

𝑐N𝑒[;-
� 

 
so that 
 

𝒂 = 𝑿�
𝑐*𝑒[$-

𝑐!𝑒[%-

𝑐N𝑒[;-
� 

 
where the variables 𝑐) are constants to be determined from the initial conditions. 
 
We begin by finding the eigenvalues λY of 𝑴. 
 

|𝑴 − 𝜆𝑰| = 0 
 

�
−𝑘* − 𝜆 0 0
𝑘* −𝑘! − 𝜆 0
0 𝑘! −𝜆

� = (−𝑘* − 𝜆)(−𝑘! − 𝜆)(−𝜆) = 0 

 
We obtain 𝜆* = −𝑘*, 𝜆! = −𝑘!,	𝜆N = 0. 
 
Next, we find the corresponding eigenvectors. 
 
For 𝜆* = −𝑘* 
 

�
0 0 0
𝑘* 𝑘* − 𝑘! 0
0 𝑘! +𝑘*

��
𝑥*,*
𝑥*,!
𝑥*,N

� = 0 

 
If we choose 𝑥*,N = 1, we find 𝑥*,! = −𝑘*/𝑘!, and 𝑥*,* = (𝑘* − 𝑘!)/𝑘!, so that 
 

𝒙𝟏 = �
𝑥*,*
𝑥*,!
𝑥*,N

� = �
(𝑘* − 𝑘!)/𝑘!	
−𝑘*/𝑘!

1
� 

 
Similarly, we obtain 
 

𝒙𝟐 = �
0	
−1
1
� 
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𝒙𝟑 = �
0	
0
1
� 

 
We obtain the matrix equation 
 

𝒂 = �
𝑎*
𝑎!
𝑎N
� = �

(𝑘* − 𝑘!)/𝑘! 0 0
−𝑘*/𝑘! −1 0

1 1 1
��

𝑐*𝑒[$-

𝑐!𝑒[%-

𝑐N𝑒[;-
� 

 

In order to find the coefficients 𝑐), we impose the boundary condition 𝒂(𝑡 = 0) = b
𝑎*,+
0
0
d, so that 

b
𝑎*,+
0
0
d = �

(𝑘* − 𝑘!)/𝑘! 0 0
−𝑘*/𝑘! −1 0

1 1 1
��

𝑐*
𝑐!
𝑐N
� 

 
We obtain 
 

𝑐* =
𝑘!

𝑘* − 𝑘!
𝑎*,+ 

 

𝑐! = −
𝑘*
𝑘!
𝑐* =

𝑘*
𝑘! − 𝑘*

𝑎*,+ 

 
𝑐N = −𝑐* − 𝑐! = 𝑎*,+ 

 
This finally yields the time dependent concentrations 𝒂 
 

𝒂 = �
𝑎*
𝑎!
𝑎N
� = �

(𝑘* − 𝑘!)/𝑘! 0 0
−𝑘*/𝑘! −1 0

1 1 1
��

𝑐*𝑒[$-

𝑐!𝑒[%-

𝑐N𝑒[;-
� 

 

= �
(𝑘* − 𝑘!)/𝑘! 0 0
−𝑘*/𝑘! −1 0

1 1 1
�

⎝

⎜⎜
⎛

𝑘!
𝑘* − 𝑘!

𝑎*,+𝑒$^$-

𝑘*
𝑘! − 𝑘*

𝑎*,+𝑒$^%-

𝑎*,+ ⎠

⎟⎟
⎞

 

 

=

⎝

⎜⎜
⎛

𝑎*,+𝑒$^$-

𝑎*,+
𝑘*

𝑘! − 𝑘*
<𝑒$^$- − 𝑒$^%-A

𝑎*,+ �1 +
1

𝑘! − 𝑘*
<𝑘*𝑒$^%- − 𝑘!𝑒$^$-A�⎠

⎟⎟
⎞

 

 
Note that this agrees with the solution we found above. 
 
 
2.5.2 LAPLACE METHOD: LINEAR ODES 
 
(see the course “Numerical Methods”) 
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2.6 NUMERICAL SOLUTION METHODS 
2.6.1 STOCHASTIC METHOD 
 
The mathematical approach we have used so far for describing the kinetics of a system by a set of 
coupled differential equations is deterministic, i.e., it allows us to predict the concentration of different 
species at any given point in time. However, we have not provided any justification for such an 
approach, other than that it seems to agree with experiments. 
 
Here, we will put this procedure on a more solid foundation by looking at the reactions of individual 
molecules – an approach similar to that used in Statistical Thermodynamics. Because of the quantum 
nature of molecules and our lack of knowledge of the initial conditions of a molecule, we can regard its 
reaction as a stochastic process. We will find that in the limit of large numbers of molecules, a stochastic 
description of the reaction kinetics will frequently yield the same results as a deterministic description, 
if we consider ensemble averages. This is essentially a result of the law of large number. 
 
However, a stochastic approach also allows us to describe statistical fluctuations, i.e. deviations from 
the mean. If these fluctuations, which we can quantify with the standard deviation, are small compared 
to the average value, a deterministic description is justified. However, if large fluctuations are present, 
so that the standard deviation is comparable to the average value, a deterministic approach may not 
yield a realistic description. Such is the case if strong correlations exist in the system. Fluctuations also 
dominate the behavior of a system if only a few reactants are present, such as a small number of enzymes 
in a cell. 
 
Finally, the stochastic approach also offers a straightforward numerical recipe to solve complex 
differential equations, providing an alternative if numerical integration fails. 
 
As an example, we will consider the irreversible reaction 
 

A → B 
 
and assume that at 𝑡 = 0, 𝑛+ A molecules and no B molecules are present. At the core of the stochastic 
approach is the probability that one single A molecule will react to B within the next time period Δ𝑡: 
 

𝑝reaction = 1 − 𝑒$/E- ≈ 𝑘Δ𝑡 
 
where 𝑘 is a constant and where we have also assumed that Δ𝑡 is sufficiently small. For 𝑛 molecules 
of A, the probability 𝑊(,($*(Δ𝑡) that any one of them will react within the next time period Δ𝑡 is 
 

𝑊(,($*(Δ𝑡) = 𝑘𝑛Δ𝑡 + 𝒪(Δ𝑡) 
 
where the term 𝒪(Δ𝑡) describes the probability that more than one molecule will react. If we assume 
that Δ𝑡 is small, this term will be negligible. Correspondingly, the probability 𝑊(,((Δ𝑡) that no A 
molecule reacts is 
 

𝑊(,((Δ𝑡) = 1 −𝑊(,($*(Δ𝑡) = 1 − <𝑘𝑛Δ𝑡 + 𝒪(Δ𝑡)A 
 
We furthermore denote the probability of finding 𝑛 molecules of A at time 𝑡 as 𝑃((𝑡). For the probability 
𝑃((𝑡 + Δ𝑡) of finding 𝑛 molecules at time 𝑡 + Δ𝑡, we can then derive the expression 
 

𝑃((𝑡 + Δ𝑡) = 𝑃(R*(𝑡)𝑊(R*,((Δ𝑡) + 𝑃((𝑡)𝑊(,((Δ𝑡) 
 
which is a sum of the probability that 𝑛 + 1 molecules were present at time 𝑡, of which one reacted, 
and the probability that only 𝑛 molecules were present at time 𝑡, of which none reacted. In essence, this 
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expression contains a sum over all the possible paths that lead to 𝑛 molecules at time 𝑡 + Δ𝑡. Upon 
substitution, 
 

𝑃((𝑡 + Δ𝑡) = 𝑘(𝑛 + 1)Δ𝑡𝑃(R*(𝑡) + (1 − 𝑘𝑛Δ𝑡)𝑃((𝑡) + 𝒪(Δ𝑡) 
 
rearrangement gives 
 

𝑃((𝑡 + Δ𝑡) − 𝑃((𝑡)
Δ𝑡

= 𝑘(𝑛 + 1)𝑃(R*(𝑡) − 𝑘𝑛𝑃((𝑡) + 𝒪(Δ𝑡) 
 
which for Δ𝑡 → 0 becomes 
 

𝑑𝑃(
𝑑𝑡

= 	𝑘(𝑛 + 1)𝑃(R*(𝑡) − 𝑘𝑛𝑃((𝑡) 
 
This is called the master equation which describes the coupled rate equations for all possible states of 
the system. We will now try to find analytical solutions for all probabilities 𝑃(, which will then allow 
us to make a connection to the deterministic description of the reaction. 
 
The probability 𝑃(! can be easily found, since 
 

𝑃(!R*(𝑡) = 0 
 
so that 
 

𝑑𝑃(!
𝑑𝑡

= −𝑘𝑛+𝑃(!(𝑡) 
 
At time 𝑡 = 0 
 

𝑃(!(𝑡 = 0) = 1 
 
and we obtain 
 

𝑃(!(𝑡) = 𝑒$/(!- 
 
For the probability 𝑃(!$*(𝑡), 𝑛 = 𝑛+ − 1 and 
 

𝑑𝑃(!$*
𝑑𝑡

= 	𝑘𝑛+𝑒$/(!- − 𝑘(𝑛+ − 1)𝑃(!$*(𝑡) 
 
To solve this inhomogeneous linear ODE, we first find a general solution of the homogeneous equation 
 

𝑃(!$* = 𝑐𝑒$/((!$*)- 
 
Instead of guessing a particular solution of the inhomogeneous equation, as we have done above, we 
will here apply the variation of constants. We find the general solution of the inhomogeneous equation 
by setting  
 

𝑃(!$* = 𝑐(𝑡)𝑒$/((!$*)- 
 
which upon substitution into the inhomogeneous equation gives 
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𝑐̇(𝑡)𝑒$/((!$*)- = 𝑘𝑛+𝑒$/(!- 
 

𝑐̇(𝑡) = 𝑘𝑛+𝑒$/- 
 

𝑐(𝑡) = −𝑛+<𝑒$/- − 1A + 𝑐(0) 
 
Since 𝑃(!$*(0) = 0, we can conclude that 𝑐(0) = 0, so that 
 

𝑃(!$* = 𝑛+<1 − 𝑒$/-A𝑒$/((!$*)- 
 
We can rewrite this equation as follows 
 

𝑃(!$* = e
𝑛+

𝑛+ − 1f <𝑒
$/-A(!$*<1 − 𝑒$/-A(!$((!$*) 

 
This suggests the following interpretation. The term e

𝑛+
𝑛+ − 1f reflects the number of ways one can pick 

the 𝑛+ − 1 unreacted molecules out of the total of 𝑛+. The probability that one molecule has not reacted 
is 𝑒$/-, so that the term <𝑒$/-A(!$* is the probability that 𝑛+ − 1 molecules have not done so. Finally, 
the term <1 − 𝑒$/-A* is the probability for one molecule to have reacted. 
 
Indeed, one can show that in general, 
 

𝑃( = e𝑛+𝑛 f <𝑒
$/-A(<1 − 𝑒$/-A(!$( 

 
which we can understand in a similar way. The probabilities 𝑃( correspond in fact to a binomial 
distribution 
 

𝑃( = e𝑛+𝑛 f <𝑒
$/-A(<1 − 𝑒$/-A(!$( = e𝑛+𝑛 f𝑝

((1 − 𝑝)(!$( 
 
with 𝑝 = 𝑒$/- the probability that a molecule has not reacted. In order to compare this distribution to 
the integrated rate equation as obtained from the deterministic approach, we calculate the mean number 
of molecules 〈𝑛(𝑡)〉 as well as the associated standard deviation 𝜎(𝑡). 
 

〈𝑛(𝑡)〉 = M𝑛𝑃(

(!

(.+

= M𝑛e𝑛+𝑛 f𝑝
((1 − 𝑝)(!$(

(!

(.+

 

 
With 
 

𝑛 e𝑛+𝑛 f = 𝑛
𝑛+!

(𝑛+ − 𝑛)! 𝑛!
=

𝑛+(𝑛+ − 1)!
(𝑛+ − 𝑛)! (𝑛 − 1)!

= 𝑛+ e
𝑛+ − 1
𝑛 − 1 f 

 
we find 
 

〈𝑛(𝑡)〉 = 𝑛+Me𝑛+ − 1𝑛 − 1 f𝑝
((1 − 𝑝)(!$(

(!

(.*

= 𝑛+𝑝M e𝑛+ − 1𝑛 − 1 f𝑝
($*(1 − 𝑝)(!$(

(!

(.*

 

 
Notice that the sum now runs from 𝑛 = 1 to 𝑛+. With 𝑚 = 𝑛 − 1 and 𝑚+ = 𝑛+ − 1 
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〈𝑛(𝑡)〉 = 𝑛+𝑝 M e𝑚+
𝑚 f𝑝'(1 − 𝑝)'!$'

'!

'.+

 

 
Since the sum over the entire distribution must equal one, we finally obtain 
 

〈𝑛(𝑡)〉 = 𝑛+𝑝 = 𝑛+𝑒$/- 
 
which is exactly the deterministic result. For the variance 𝜎(𝑡)!, we find with a little more effort 
 

𝜎(𝑡)! = M(𝑛 − 〈𝑛〉)!𝑃(

(!

(.+

= M𝑛!𝑃(

(!

(.+

− 〈𝑛〉! = 𝑛+𝑒$/-(1 − 𝑒$/-) 

 
The ratio of the standard deviation and the average yields 
 

𝜎(𝑡)
〈𝑛(𝑡)〉

=
√𝑒/- − 1
¢𝑛+

 

 
showing that for large numbers of molecules 𝑛+, the fluctuations will be small compared with the 
average value, in which case a deterministic approach is justified. 
 
While we have here looked at the example of a simple reaction A → B, one can perform a similar 
analysis for more complex reactions. One always obtains the deterministic solution from the ensemble 
average. Whether such a deterministic description is justified or if instead fluctuations are important, 
can be decided based on the ratio of the standard deviation and the average value. 
 
The stochastic approach also provides an alternative means of solving rate equations without having to 
resort to numerical integration. As an example, we will consider the reaction 
 

A
𝑘1
⇄
𝑘2
B 

 
The algorithm we will discuss here is based on generating random numbers in order to decide whether 
at a given point in time a molecule of A reacts to B or vice versa. In order to obtain an efficient algorithm, 
we divide the problem in two steps. First, we randomly pick a time 𝜏 at which the next reaction of either 
a molecule A or a molecule B will occur, while taking into account the probability distribution of 
reaction times 𝑃(𝜏). Then we randomly decide which of the two reactions takes place, according to the 
probabilities 𝑃(𝑖) for the reaction 𝑖 to occur. 
 
According to the discussion above, the probability 𝑝no	reaction that no reaction of either the 𝑛* A 
molecules or the 𝑛! B molecules has occurred after time 𝜏 is 
 

𝑝no	reaction = 𝑒$(/$($R/%(%)b 
 
Consequently, the probability 𝑃(𝜏)𝑑𝜏 for the reaction to occur in the time interval [𝜏, 𝜏 + 𝑑𝜏] must be 
proportional to the time derivative of the probability 𝑝no	reaction. 
 

𝑃(𝜏)𝑑𝜏 = −
𝑑𝑝no	reaction

𝑑𝜏
𝑑𝜏 = (𝑘*𝑛* + 𝑘!𝑛!)𝑒$(/$($R/%(%)b𝑑𝜏 = 𝑎𝑒$%b𝑑𝜏 
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with 𝑎 = ∑ 𝑘)𝑛)) . We can easily verify that the probability distribution 𝑃(𝜏) is normalized, i.e. 
∫ 𝑃(𝜏)𝑑𝜏K
+ = 1.  

 
We use a random number generator to obtain a first random number 𝑟* in the interval [0, 1] that will 
determine the reaction time 𝜏, which we obtain from the cumulative probability for the reaction time is  
 

𝑃cum(𝜏) = P𝑃(𝜏)𝑑𝜏
b

+

= 1 − 𝑒$%b 

 
The random number 𝑟* replaces 𝑃cum(𝜏), so that 
 
 

𝜏 =
1
𝑎
ln

1
(1 − 𝑟*)

 

 
which produces the same result as 
 

𝜏 =
1
𝑎
ln
1
𝑟*

 

 
We then generate a second random number 𝑟! to decide which reaction 𝑖 occurred at time 𝜏. The 
probability 𝑃(𝑖) that reaction	𝑖 occurs if any reaction occurs is then simply 
 

𝑃(𝑖) =
𝑘)𝑛)
∑ 𝑘)𝑛))

=
𝑘)𝑛)

𝑘*𝑛* + 𝑘!𝑛!
=
𝑘)𝑛)
𝑎

 

so that 
 

𝑖 = �1 	 if	𝑟! < 𝑘*𝑛*/𝑎
2 	 if	𝑟! > 𝑘*𝑛*/𝑎

 

 
We then increment the reaction time variable by 𝜏 and repeat the previous steps. 
 

  
 
 
 
2.6.2 NUMERICAL INTEGRATION 
 
(see the course “Numerical Methods”) 
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3 CATALYSIS AND POLYMERIZATION 
 
Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 5. (Prentice Hall, 
1989). 
 
Atkins, P. & de Paula, J. Atkins’ Physical Chemistry Ch.  20. (Oxford University Press, 2014). 

 

3.1 CATALYSIS AND EQUILIBRIUM 
 
A catalyst is a chemical substance that increases the rate of a reaction without itself being consumed in 
the reaction. Formally, a reaction 
 

A → B 
 
will proceed faster in the presence of a catalyst C 
 

A	+	C → B	+	C 
 
The catalyst achieves this by lowering the activation energy of the reaction, without however changing 
the Free Energy of the reaction and therefore its equilibrium constant. 
 
 

 
 
We can illustrate this for a reversible reaction at equilibrium 
 

A
𝑘1
⇄
𝑘-1
B 

 
for which a second catalyzed reaction path exists 
 

A	+	C
𝑘1Z
⇄
𝑘-1Z
B	+	C 

 
According to the principle of detailed balance, we find at equilibrium 
 

𝐾eqZ =
𝑘*Z

𝑘$*Z
=
[𝐵]eq[𝐶]
[𝐴]eq[𝐶]

=
[𝐵]eq
[𝐴]eq

=
𝑘*
𝑘$*

= 𝐾eq 
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We can conclude that the catalysts speeds both the forward and the reverse reaction up by the same 
factor. 
 
 
3.2 ENZYMATIC CATALYSIS AND THE MICHAELIS-MENTEN MECHANISM 
 
As an example, we will here look at enzymatically catalyzed reactions. Such reactions have in common 
that they proceed through an intermediate in which the substrate docks to the enzyme. 
 
The figure below shows snapshots of such a process, illustrated with a space-filling model. A hexose 
docks to the active site of a hexokinase, which then catalyzes its phosphorylation. Subsequently, the 
reaction product is released. 
 

 
 
In general, the reaction between enzyme E and substrate S  
 

E + S ⇄ ES ⇄ EZ ⇄ EP ⇄ E + P 
 
will proceed through a number of intermediates, such as an enzyme-substrate complex (ES), an enzyme-
product complex (EP), and an activated complex (EZ). The Michaelis-Menten mechanism simplifies 
this reaction sequence, which leads to a simple description of the kinetics that is useful for extracting 
various kinetic parameters. 
 

E + S
𝑘1
⇄
𝑘-1
ES
𝑘2
→
	
E + P 

 
The assumptions are that 

1) the reaction proceeds in only two steps, 
2) there is no reverse reaction from the product(s) to the substrate (or we restrict our measurements 

to the initial stages of the reaction where [P] is small and the backreaction can be neglected). 
 
Furthermore, in order to solve the resulting differential equations, we assume that 

3) the steady-state approximation can be applied to the enzyme-substrate complex ES, 
4) the enzyme concentration is much smaller than that of the substrate, [E] ≪ [S]. 

 
 

𝑑[ES]S
𝑑𝑡

= 𝑘*[E][S] − (𝑘$* + 𝑘!)[ES]S = 0 
 
With [E]+ = [E] + [ES]S, we obtain 

[ES]S =
𝑘*[E]+[S]

𝑘*[S] + 𝑘$* + 𝑘!
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Since [ES] ≈ [E] ≪ [S], we can approximate [S]+ = [S] + [P], so that 
 

𝑣 = −
𝑑[S]
𝑑𝑡

=
𝑑[P]
𝑑𝑡

= 𝑘![ES]S =
𝑘*𝑘![E]+[S]

𝑘*[S] + 𝑘$* + 𝑘!
 

 
which we can rewrite to obtain the Michaelis-Menten Equation: 
 

𝑣 =
𝑘![E]+

1 + 𝑘$* + 𝑘!𝑘*[S]
	
=

𝑣max

1 + 𝐾f[S]	
 

 
with the maximum rate 𝑣max = 𝑘![E]+ and the Michaelis constant 𝐾f = (𝑘$* + 𝑘!)/𝑘*. 
 
We can distinguish two limiting cases. For [S] ≪ 𝐾f, 
 

𝑣 =
𝑣max
𝐾f

[S] =
𝑘!
𝐾f

[E]+[S] 

 
so that the reaction becomes first-order in S. For [S] ≫ 𝐾f, 
 

𝑣 = 𝑣max = 𝑘![E]+ 
 
so that the reaction becomes zero-order in S. Under such conditions, the enzyme is essentially saturated 
due to the abundance of the substrate, and all the enzyme is tied up in the enzyme-substrate complex, 
i.e. [ES]S = [E]0. 
 
A plot of the rate 𝑣 versus the substrate concentration [S] is called Michaelis-Menten Plot, from which 
one can obtain the maximum rate 𝑣max as well as the Michaelis constant 𝐾f: 
 

 
 
 
The Lineweaver-Burk Plot of *

g
 versus *[S] can afford better precision: 

 
1
𝑣
=
𝐾f
𝑣max

1
[S]
	+

1
𝑣max

 

 

vmax

vmax



Kinetics & Dynamics 32 

 
 
Another alternative is the Eadie-Hofstee Plot: 
 

𝑣
[E]+[S]

=
𝑘!
𝐾f

−
𝑣

𝐾f[E]+
 

 
 

 
 
 
 
3.3 INHIBITION OF ENZYMATIC REACTIONS 
 
An inhibitor I decreases the rate of an enzyme catalyzed reaction, either by binding the enzyme E and 
thus leaving less free enzyme that can catalyze the reaction, or by binding to the enzyme-substrate 
complex ES and preventing the product formation from proceeding. 
 

E + S		
𝑘1
⇄
𝑘-1
		ES		

𝑘2
→
	
		E + P 

	
		↑↓ 𝐾EI 	↑↓ 𝐾ESI
EI							 ESI					

	
 
In order to find an expression for the rate of product formation in the presence of an inhibitor, we apply 
the steady-state-approximation to the enzyme-substrate complex ES as above, so that 
 

𝑣 = −
𝑑[S]
𝑑𝑡

=
𝑑[P]
𝑑𝑡

= 𝑘![ES]S 
 

vmax

vmax
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Moreover, we also assume that the reaction ES  
𝑘2
→
	

  E+ P is slow, so that all other species exist in a 

pre-equilibrium. In order to obtain an expression for [ES]S, we write down the mass balance for the 
enzyme, as we did above: 
 

[E]+ = [E] + [EI] + [ES]S + [ESI] 
 
Under pre-equilibrium conditions, we can define the dissociation constants of the different complexes 
 

𝐾ES =
𝑘-1
𝑘*

=
[E][S]
[ES]

; 𝐾EI =
[E][I]
[EI]

; 𝐾ESI =
[ES][I]
[ESI]

 

 
so that we can substitute 
 

[E]+ = [E] +
[E][I]
𝐾EI

+ [ES] +
[ES][I]
𝐾ESI

= [E]𝛼 + [ES]𝛼′ 

 
with 
 

𝛼 = 1 +
[I]
𝐾EI

; 𝛼Z = 1 +
[I]
𝐾ESI

 

 
We also substitute [E], 
 

[E]+ = [ES] }𝛼Z + 𝛼
𝐾ES
[S]~

 

 
and finally obtain 
 

𝑣 = 𝑘![ES] =
𝑘![E]+

𝛼Z + 𝛼𝐾ES[S]
=

𝑣max

𝛼Z + 𝛼𝐾ES[S]
 

 
This equation resembles the Michaelis-Menten equation 
 

𝑣MM =
𝑣max

1 + 𝐾f[S]	
 

 
which we obtain when we assume that no inhibition occurs, i.e., the dissociation constants for the 
inhibitor become infinite, so that 
 

lim
kEI→K

𝛼 = 1; lim
kESI→K

𝛼′ = 1 
 
and 
 

lim
kEI→K,
kESI→K

𝑣 =
𝑣max

1 + 𝐾ES[S]
 

 
By comparison,  
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𝐾f =
𝑘$* + 𝑘!

𝑘*
≈ 𝐾ES =

𝑘$*
𝑘*

 

 
which is the case, if 𝑘$* ≫ 𝑘!. This is the condition for the existence of a pre-equilibrium as we 
assumed above. 
 
We can distinguish three types of inhibition. Competitive inhibition occurs when the inhibitor binds 
to the active site of the enzyme, thus competing with the substrate 
 

E + S		
𝐾ES
⇄
	
		ES		

𝑘2
→
	
		E + P 

	
↑↓ 𝐾EI 	
EI							 	

 
 
If no binding of the inhibitor to the enzyme-substrate complex ES occurs (𝛼Z = 1 and 𝛼 > 1), so that 
 

𝑣 =
𝑣max

1 + 𝛼𝐾ES[S]
 

 
We can see that at low concentrations of the substrate [S], the inhibitor slows down the reaction 
 

𝑣 ≈
𝑣max
𝛼𝐾ES

[S] 

 
while in the limit of [S] → ∞, the maximum rate remains unchanged 𝑣 = 𝑣max. 
 
 
Uncompetitive inhibition occurs if the inhibitor prevents the enzyme-substrate complex ES from 
reacting to the products by binding to a site other than the active site. 
 

E + S		
𝑘1
⇄
𝑘-1
		ES		

𝑘2
→
	
		E + P 

	
												 				↑↓ 𝐾ESI
	 ESI					

 
 
Without binding at the active site (𝛼 = 1 and 𝛼′ > 1), so that 
 

𝑣 =
𝑣max

𝛼Z + 𝐾ES[S]
 

 
We can see that at low concentrations of the substrate [S], the inhibitor leaves the reaction rate 
unchanged 
 

𝑣 ≈
𝑣max
𝐾ES

[S] 

 
while in the limit of [S] → ∞, the maximum rate is lowered 𝑣 = 𝑣max/𝛼Z. 
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Finally, for mixed inhibition (noncompetitive inhibition), the inhibitor binds to both the enzyme E as 
well as the enzyme-substrate complex ES at a site other than the active site, so that 𝛼 > 1 and 𝛼Z > 1 
and 
 

𝑣 =
𝑣max

𝛼Z + 𝛼𝐾ES[S]
 

 
In all cases, the efficiency of the inhibitor can be obtained through comparison of results from 
measurements in the presence and absence of the inhibitor. 
 
 
3.4 AUTOCATALYSIS 
 
Autocatalysis occurs when the product of a reaction appears as the reactant of either the same reaction 
or a coupled reaction. In the simplest case 
 

A + B
𝑘
→
	
	2B 

 
𝑑x
𝑑𝑡
= −

𝑑[A]
𝑑𝑡

= 𝑘[A][B] 
 
With the extent of the reaction per unit volume 𝑥 = [A]+ − [A]- = [B]- − [B]+, 
 

𝑑x
𝑑𝑡
= 𝑘([A]+ − 𝑥)(𝑥 + [B]+) 

 
and 
 

P
𝑑x

([A]+ − 𝑥)(𝑥 + [B]+)

0

+

= P𝑘𝑑𝑡
-

+

 

 
which we integrate with the method of partial fractions 
 

P
𝑑x

([A]+ − 𝑥)(𝑥 + [B]+)

0

+

=
1

[A]+ + [B]+
±P

𝑑x
([A]+ − 𝑥)

0

+

+P
𝑑x

(𝑥 + [B]+)

0

+

²

=
1

[A]+ + [B]+
ln ³
[𝐴]+(𝑥 + [𝐵]+)
[𝐵]+([𝐴]+ − 𝑥)

³ = 𝑘𝑡 

 
With [B]- = [B]+ + 𝑥, we obtain 
 

[B]- =
[A]+ + [B]+

1 + [A]+[B]+
𝑒$([A]!R[B]!)/-
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The time dependence of [B] shows a typical S curve: In the induction period, the rate of the reaction 
increases steadily, before it reaches a maximum at the inflection point at time 𝑡∗, after which the reaction 
rate slows until it drops to zero at long times. Such behavior is for example associated with the growth 
of a population, such as bacteria (B) with a limited food supply (A). Note that for an initial concentration 
[B]+ = 0, the reaction does not proceed. 
 
 
3.5 POLYMERIZATION 
 
We distinguish two cases of polymerization reactions. 
 
In stepwise polymerization, any two monomers may react at any time or add to an already growing 
chain. An example is the polycondensation reaction of a hydroxyacid HO–R–COOH to form polyester: 
 

HO–R–COOH + HO–R–COOH → HO–R–COO–R–COOH + H!O 
 
The rate equation for the consumption of acid groups is 
 

−
𝑑[A]
𝑑𝑡

= −
𝑑[COOH]

𝑑𝑡
= 𝑘[COOH][OH] = 𝑘[A]! 

 
where we have used that [COOH] = [OH] = [A]. As we have derived above, 
 

[A] =
[A]+

1 + 𝑘𝑡[A]+
 

 
The fraction 𝑝 of monomers that have reacted is 
 

𝑝 =
[A]+ − [A]
[A]+

=
𝑘𝑡[A]+

1 + 𝑘𝑡[A]+
 

 
and the degree of polymerization, i.e., the average chain length 〈𝑁〉 is 
 

〈𝑁〉 =
[A]+
[A]

=
1

1 − 𝑝
= 1 + 𝑘𝑡[A]+ 

 
We see that the average chain length increases linearly with time. 
 
Chain polymerizations proceed by adding monomers to the end of the growing polymer chain. As an 
example, we will look at radical polymerizations such as that of ethylene to form polyethylene: 
 

R–CH!CH! ∙ 	+	CH!CH! → R–CH!CH!CH!CH! ∙ 
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The reaction proceeds in three distinct reaction steps. During initiation, radicals are formed which 
subsequently start the chain reaction. In the example below, an initiator In is thermally decomposed to 
generate two radicals R ∙. Other radical initiators are activated photochemically or through oxidation. 
 

 
 
In general,  
 

In 
𝑘)
→	
	
2	R ∙ 

 
𝑑[R ∙]
𝑑𝑡

= 2𝑘)[In] 
 
Subsequently, the radical reacts with a monomer M to give a radical M* ∙ 
 

R ∙ +	M		 
fast
→	
	
		M* ∙ 

 
During propagation, further monomers M are added, resulting in continuous chain growth: 
 

M* ∙ 	+	M
𝑘7
	→	
	
	M! ∙	

M! ∙ 	+	M	
𝑘7
→	
	
	MN ∙	

	⋮ 
 
To simplify matters we will assume that the monomer addition steps all proceed with the same rate 
constant 𝑘7 independent of chain length. 
 
Chain termination occurs when two radical chains combine: 
 

M( ∙ 	+	M' ∙ 	
𝑘-
→	
	
	M(R' (mutual termination) 

 
Here, we assume again that the rate is independent of the chain length. Other processes we will not 
consider in our simple treatment include the following: 
 

M( ∙ 	+	M' ∙	→ 	M( 	+ 	M' (disproportionation) 
 

M( ∙ 	+	M →	M( + 	M ∙ (chain transfer) 
 
In order to obtain a solution for the rate of polymer growth 𝑣7, 
 

𝑣7 = −
𝑑[M]
𝑑𝑡

= 𝑘7[M ∙	][M] 
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we apply the steady-state approximation to the concentration of all radical chains of any length [M ∙	], 
which we can assume to be small. 
 

𝑑[M ∙	]
𝑑𝑡

= 2𝑓𝑘)[In] − 2𝑘-[M ∙]! = 0 
 
Here, we assume that the initiator radicals react instantaneously to form chain radicals with an efficiency 
𝑓, which leads to the first term of the rate equation. The second term contains the rate of mutual 
termination. We find 
 

[M ∙] = }
𝑓𝑘)
𝑘-
~

*
!
[In]

*
! 

 
so that 
 

𝑣7 = −
𝑑[M]
𝑑𝑡

= 𝑘7 }
𝑓𝑘)
𝑘-
~

*
!
[In]

*
![M] 

 
We can employ this expression to calculate the kinetic chain length 𝜆 
 

𝜆 =
monomer	units	consumed
activated	centers	produced

 

 
We can estimate this ratio by taking the ratio of the corresponding rates. Moreover, under steady-state 
conditions, the rate of activated center production will equal the rate of chain termination: 
 

𝜆 ≈
rate	of	monomer	consumption

rate	of	activated	center	production
=
𝑘7[M ∙	][M]
2𝑓𝑘)[In]

≈
𝑘7[M ∙	][M]
2𝑘-[M ∙]!

	

	

=
𝑘7[M]
2𝑘-[M ∙]

=
𝑘7

2(𝑓𝑘)𝑘-)
*
!
[In]$

*
![M] 

 
We obtain an estimate of the degree of polymerization 〈𝑁〉 by assuming that all chains are terminated 
by mutual termination, so that 
 

〈𝑁〉 = 2𝜆 =
𝑘7

(𝑓𝑘)𝑘-)
*
!
[In]$

*
![M] 

 
We can see that a smaller initiator concentration will lead to a polymer with higher molecular weight. 
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4 THE KINETIC THEORY OF GASES 
 
McQuarrie, D. A. & Simon, J. D. Physical Chemistry: A Molecular Approach Ch. 27. (University 
Science Books, 1997). 
 
In the previous chapters of the course, we have covered various topics of macroscopic kinetics. We 
have studied a range of kinetic systems of varying complexity and have predicted their evolution based 
on the knowledge of the coupled rate equations that govern them as well as the rate constants involved. 
While we have discussed how to measure these rate constants, we have not addressed the question what 
determines the speed of a chemical reaction. If we want to predict rate constants from first principles, 
we need to develop a microscopic picture of chemical reactions, which we will do in the remainder of 
this course. We will begin with simple reactions in the gas phase that occur as gas molecules collide 
with each other. In contrast, the description of reactions in the condensed phase is vastly more complex 
due to the presence of solvent molecules that surround the reactants. Once we have developed a more 
detailed picture of gas-phase reactions, we can then transfer these concepts to more complicated 
reactions in solution. 
 
Before we consider reactive collisions of gas molecules, we first introduce a simple model of gases, the 
kinetic theory of gases, which quantitatively describes the behavior of an ideal gas. At sufficiently low 
pressure, all gases, independently of their nature, behave as ideal gases. The kinetic gas theory describes 
such an ideal gas as an ensemble of molecules that are in constant motion. At low pressure, the average 
distance between two molecules is much larger than the molecular diameter, so that one can make the 
simplifying assumption that the gas molecules do not interact. Therefore, they do not possess any form 
of potential energy, but only kinetic energy, hence the name kinetic theory of gases. Collisions of two 
molecules are assumed to be collisions of hard spheres. They occur elastically, i.e. the total translational 
energy of molecules does not change during the collision; or in other words, no internal degrees of 
freedom (vibrations and rotations) are excited during the collision. 
 
4.1 AVERAGE TRANSLATIONAL KINETIC ENERGY 
Using these assumptions, we can calculate the pressure of an ideal gas and derive the ideal gas law. We 
consider a molecule of mass 𝑚 with velocity components 𝑢*0, 𝑢*m,	𝑢*n that moves in a container that 
for simplicity, we assume to be rectangular with sides 𝑎, 𝑏,	𝑐. Generalizing our approach to containers 
of arbitrary shape is straightforward. 
 

 
 
When the molecule strikes the right wall, it exerts a force upon this wall that arises from the change of 
the 𝑥-component of its momentum 𝑚𝑢*0. If we assume that the collision is elastic, the momentum 
reverses sign, so that the absolute change in momentum becomes 
 

∆(𝑚𝑢*0) = |−𝑚𝑢*0 −𝑚𝑢*0| = 2𝑚𝑢*0 
 
After the molecule bounces off the left wall, it will strike the right wall again after a roundtrip time of 
∆𝑡 = 2 %

o$>
. The momentum per unit time imparted to the right wall therefore becomes 

 
∆(𝑚𝑢*0)

∆𝑡
=
𝑚𝑢*0!

𝑎
= 𝐹* 
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According to Newton’s second law this is equal to the force the molecule exerts on the right wall 𝐹*. 
We obtain the associated pressure 𝑃* by dividing by the surface area of the right wall 𝑏𝑐 
 

𝑃* =
𝐹*
𝑏𝑐
=
𝑚𝑢*0!

𝑎𝑏𝑐
=
𝑚𝑢*0!

𝑉
 

 
with 𝑉 = 𝑎𝑏𝑐 the volume of the container. We sum over all molecules to obtain the total pressure 
 

𝑃 = 	M𝑃U

p

U.*

=M
𝑚𝑢U0!

𝑉

p

U.*

=
𝑚
𝑉
M𝑢U0!
p

U.*

 

 
With ∑ 𝑢U0!p

U.* = 𝑁〈𝑢0!〉, this leads to 
 

𝑃𝑉 = 𝑁𝑚〈𝑢0!〉 
 
Because the gas is isotropic, 
 

〈𝑢0!〉 = 〈𝑢m!〉 = 〈𝑢n!〉 
 
And since 𝑢! = 𝑢0! + 𝑢m! + 𝑢n!, it follows that 
 

〈𝑢!〉 = 〈𝑢0!〉 + 〈𝑢m!〉 + 〈𝑢n!〉 
 
so that 
 

〈𝑢0!〉 =
1
3
〈𝑢!〉 

 
and 
 

𝑃𝑉 =
1
3
𝑁𝑚〈𝑢!〉 

 
 
From statistical thermodynamics, we know that the average translational energy per molecule of an 
ideal gas is 
 

〈
1
2
𝑚𝑢!〉 =

1
2
𝑚〈𝑢!〉 =

3
2
𝑘q𝑇 

 
with the Boltzmann constant 𝑘q. By substituting, we can thus derive the ideal gas law. 
 

𝑃𝑉 = 𝑁𝑘q𝑇 = 𝑅𝑛𝑇 
 
We can also derive an expression for the root-mean-square speed of a gas molecule 
 

𝑢r's = ¢〈𝑢!〉 = ¿3𝑅𝑇
𝑀

 

 
Note that because in general, 〈𝑢!〉 ≠ 〈𝑢〉!, the root-mean-square speed is generally different from the 
average speed, 𝑢r's ≠ 〈𝑢〉. Nevertheless, at room temperature the difference is typically below 10%. 
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Quiz: Use MATLAB to plot 𝑢r's(𝑇) for H2 and N2. 

 
4.2 THE MAXWELL-BOLTZMANN DISTRIBUTION 
The speed distribution of a gas is described by the Maxwell-Boltzmann distribution, which we will 
derive here, following first the somewhat heuristic treatment of Maxwell, and then the more rigorous 
derivation of Boltzmann. 
 
We are seeking an expression for the distribution function ℎ<𝑢0 , 𝑢m , 𝑢nA, which describes the 
probability ℎ<𝑢0 , 𝑢m , 𝑢nA𝑑𝑢0𝑑𝑢m𝑑𝑢n that a molecule’s velocity components fall between 𝑢0 and 𝑢0 +
𝑑𝑢0; 𝑢m and 𝑢m + 𝑑𝑢m; as well as 𝑢n and 𝑢n + 𝑑𝑢n. We note that 
 

P ℎ<𝑢0 , 𝑢m , 𝑢nA𝑑𝑢0𝑑𝑢m𝑑𝑢n

K

$K

= 1 

 
Maxwell uses the assumption that the distributions of the different velocity components 𝑢0, 𝑢m,	𝑢n are 
statistically independent of each other. This assumption, which turns out to be correct, allows us to write 
the speed distribution function as a product of the distributions of the individual components 
 

ℎ<𝑢0 , 𝑢m , 𝑢nA = 𝑓(𝑢0)𝑓<𝑢mA𝑓(𝑢n) 
 
The distributions for the x-, y-, and z-components must be identical because the gas is isotropic. For the 
same reason, the distribution should only depend on the speed, i.e. the magnitude of the velocity 𝑢, not 
its direction, where 
 

𝑢! = 𝑢0! + 𝑢m! + 𝑢n! 
 
We therefore introduce a new distribution function ℎÃ(𝑢) that only depends on 𝑢 and that we will use in 
the following. We take the logarithm of ℎ and differentiate with respect to one velocity component 
 

ln ℎ = ln 𝑓(𝑢0) + ln 𝑓<𝑢mA + ln 𝑓(𝑢n) 
 

}
𝜕 ln ℎ
𝜕𝑢0

~
o?,o@

=
𝑑 ln 𝑓(𝑢0)
𝑑𝑢0

 

 
We transform the partial derivate and introduce ℎÃ(𝑢) 
 

}
𝜕 ln ℎ
𝜕𝑢0

~
o?,o@

=
𝑑 ln ℎÃ
𝑑𝑢 }

𝜕𝑢
𝜕𝑢0

~
o?,o@

=
𝑢0
𝑢
𝑑 ln ℎÃ
𝑑𝑢
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Quiz: Using 𝑢! = 𝑢0! + 𝑢m! + 𝑢n!, show that e to

to>
f
o?,o@

= o>
o

. 

 
Rearrangement gives 
 

𝑑 ln ℎÃ
𝑢𝑑𝑢

=
𝑑 ln 𝑓(𝑢0)
𝑢0𝑑𝑢0

=
𝑑 ln 𝑓<𝑢mA
𝑢m𝑑𝑢m

=
𝑑 ln 𝑓(𝑢n)
𝑢n𝑑𝑢n

 

 
Since 𝑢0, 𝑢m, and 𝑢n are independent of each other, this expression must be equal to a constant, which 
we choose to be −2𝛾, so that 

𝑑 ln 𝑓<𝑢UA
𝑢U𝑑𝑢U

= −2𝛾, 𝑗 = 𝑥, 𝑦, 𝑧 

 
and upon integration 
 

𝑓<𝑢UA = 𝐴𝑒$uoA
%
 

 
Note that 𝛾 must be positive in order for the probability distribution 𝑓<𝑢UA to be normalizable. Indeed, 
we can find 𝐴 by setting  
 

P 𝑓<𝑢UA𝑑𝑢U

K

$K

= 𝐴 P 𝑒$uoA
%
𝑑𝑢U

K

$K

= 1 

 
and obtain1 
 

𝑓<𝑢UA = É
𝛾
𝜋
𝑒$uoA

%
 

 
We determine 𝛾 by calculating the average value of 𝑢U!, which we found in section 4.1 to be 〈𝑢U!〉 =
𝑅𝑇/𝑀, to that2 
 

〈𝑢U!〉 = P 𝑢U!𝑓<𝑢UA𝑑𝑢U

K

$K

=	É
𝛾
𝜋
P 𝑢U!𝑒

$uoA
%
𝑑𝑢U =

K

$K

1
2𝛾

=
𝑅𝑇
𝑀

 

 
which gives us the probability distribution for a single velocity component 
 

𝑓<𝑢UA = ¿
𝑀

2𝜋𝑅𝑇
𝑒$

foA
%

!45 = ¿
𝑚

2𝜋𝑘q𝑇
𝑒$

'oA
%

!/B5 

 
Quiz: Use MATLAB to plot 𝑓<𝑢UA for H2 and N2 at different temperatures. 
 
 

 
1 ∫ 𝑒$%0%𝑑𝑥K

$K = Év
%

 

2 ∫ 𝑥!𝑒$%0%𝑑𝑥K
$K = √v

!%;/%
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One-dimensional velocity 
distribution of N2 at 300 K and 
1000 K. 

 
Quiz: Determine the average value of the x-component of the velocity, 〈𝑢U〉, the average kinetic energy 
of the x-component of the velocity, 〈𝐸/)(,0〉, as well as the average total kinetic energy, 〈𝐸/)(,-x-%y〉. 
 
 
Following Boltzmann’s approach, we can arrive at the same result for the probability distribution for 
a single velocity component by using the Boltzmann distribution, a result of statistical thermodynamics. 
For a system at thermal equilibrium, the Boltzmann distribution describes the probability 𝑃) of finding 
the system in a state of energy 𝐸) 
 

𝑃) =
𝑒$

3"
/B5

∑ 𝑒$
3A
/B5U

=
𝑒$

3"
/B5

𝑄
 

 

where 𝑄 = ∑ 𝑒$
)A
DB+U  is the partition function, and the sum is over all energy levels. The translational 

energy for one velocity component of a gas molecule is *
!
𝑚𝑢U!, which leads to 

 

𝑓<𝑢UA = 𝐴𝑒$
*
!'oA

%

/B5  
 
which, after normalization, leads to the velocity distribution derived above. 
 
In order to derive the speed distribution of an ideal gas  ℎÃ(𝑢) (i.e. the distribution of the magnitude of 
the velocity), we write down the three-dimensional velocity distribution function ℎ<𝑢0 , 𝑢m , 𝑢nA 
 

ℎ<𝑢0 , 𝑢m , 𝑢nA𝑑𝑢0𝑑𝑢m𝑑𝑢n = 𝑓(𝑢0)𝑓<𝑢mA𝑓(𝑢n)𝑑𝑢0𝑑𝑢m𝑑𝑢n

= }
𝑚

2𝜋𝑘q𝑇
~
N
!
𝑒$

'(o>%Ro?%Ro@%)
!/B5 𝑑𝑢0𝑑𝑢m𝑑𝑢n 

 
and perform a coordinate transformation from Cartesian to polar coordinates with 
 

𝑢0! + 𝑢m! + 𝑢n! = 𝑢! 
 

𝑑𝑢0𝑑𝑢m𝑑𝑢n = ³
𝜕(𝑢0 , 𝑢m , 𝑢n)
𝜕(𝑢, 𝜙, 𝜃)

³ 𝑑𝑢𝑑𝜙𝑑𝜃 = 𝑢! sin 𝜃 𝑑𝑢𝑑𝜙𝑑𝜃 

 
so that we obtain 
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ℎ′(𝑢, 𝜙, 𝜃)𝑑𝑢𝑑𝜙𝑑𝜃 = }
𝑚

2𝜋𝑘q𝑇
~
N
!
𝑢!𝑒$

'o%
!/B5𝑑𝑢𝑑𝜙 sin 𝜃 𝑑𝜃 

 
We eliminate the angular part through integration over 𝜑 and 𝜃 (we integrate over all directions in 
which the molecule can travel) 
 

𝐹(𝑢)𝑑𝑢 = 	}
𝑚

2𝜋𝑘q𝑇
~
N
!
𝑢!𝑒$

'o%
!/B5𝑑𝑢P 𝑑𝜙

!v

+

Psin 𝜃 𝑑𝜃
v

+

= 4𝜋 }
𝑚

2𝜋𝑘q𝑇
~
N
!
𝑢!𝑒$

'o%
!/B5𝑑𝑢 

 
and thus obtain the Maxwell-Boltzmann distribution. 
 

𝐹(𝑢)𝑑𝑢 = 4𝜋 }
𝑚

2𝜋𝑘q𝑇
~
N
!
𝑢!𝑒$

'o%
!/B5𝑑𝑢 

 
Quiz: Use MATLAB to plot 𝐹(𝑢) for H2 and N2 at different temperatures. Compare with the escape 
velocity from earth. 
 

 
Speed distribution of N2 at 
300 K and 1000 K. 

 
 
 
Quiz: Derive the mean velocity 〈𝑢〉 and the most probable velocity 𝑢∗. 
 
Quiz: Derive the kinetic energy distribution 𝑓(𝜀)𝑑𝜀, where 𝜀 is the kinetic energy of a molecule. 
 
Quiz: Derive the mean energy 〈𝜀〉 and the most probable energy 𝜀∗. 
 
 
4.3 MEASUREMENTS OF THE VELOCITY DISTRIBUTION 
As you have learnt in your spectroscopy course, the velocity distribution of the molecules in a gaseous 
sample leads to so-called Doppler broadening of the spectral transitions of the gas molecules. Measuring 
this broadening can therefore be used to infer the temperature of the gas. Due to the Doppler effect, a 
molecule moving towards the observer with a velocity 𝑢0 emits or absorbs radiation at a frequency 𝜈 
that is shifted with respect the transition frequency 𝜈+ of the stationary molecule 
 

𝜈 = 𝜈+ e1 +
𝑢0
𝑐
f 

 
By substituting into the one-dimensional velocity distribution, we obtain the Doppler broadened line 
shape 
 

𝐼(𝜈) ∝ 𝑒
$'I

%(z$z!)%
!z!%/B5  
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which is a gaussian with variance 
 

𝜎! =
𝜈+!𝑘q𝑇
𝑚𝑐!

 
 
which is proportional to the temperature. 
 
The velocity distribution of a gas can also be measured with a setup as sketched below. In a vacuum 
chamber, a gas source emits a fine jet of gas molecules, which is collimated with apertures and passes 
through a velocity selector consisting of slits cut into series of spinning discs. The slit in each disc is 
displaced from that on the previous disc by a fixed angle, so that a given rotation speed will only allow 
molecules of one specific velocity to pass. A measurement of the gas flux exiting the discs as a function 
of the rotation frequency yields the velocity distribution. 
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5 COLLISIONS 
 
McQuarrie, D. A. & Simon, J. D. Physical Chemistry: A Molecular Approach Ch. 27. (University 
Science Books, 1997). 
 
In order for a chemical reaction between to gaseous molecules to occur, they have to enter into spatial 
proximity – in other words they have to collide. Similarly, gas surface reactions require a collision 
between a gas molecule and the surface. In this chapter, we will therefore study collisions. We will 
build on the concepts from the kinetic theory of gases that we have developed in the previous chapter 
and look at different models of reactive collisions that differ in the complexity of how they treat the 
intermolecular interaction. 
 
5.1 COLLISIONS WITH A WALL 
In the following, we will derive the collision flux 𝑧coll of gas molecules striking a surface, i.e. the 
number of molecules impinging on the surface per unit time and unit area. This is an important 
parameter for understanding gas-surface reactions that will also be useful in describing effusive beams. 
For a given gas density 𝜌, we use the Maxwell-Boltzmann distribution 𝐹(𝑢) to calculate the density of 
molecules 𝜌o,|,} moving at a given speed 𝑢 and with polar angles 𝜃 and 𝜙 of the velocity vector. 
 

𝜌o,|,} = 𝜌𝐹(𝑢)𝑑𝑢
sin 𝜃 𝑑𝜃𝑑𝜙

4𝜋
 

 

 
 
From the geometry sketched above, we can deduce that in a time interval 𝛥𝑡, all molecules with these 
parameters (𝑢, 𝜃, 𝜙) will strike a circular area 𝐴 if they are contained within the volume of an oblique 
cylinder of volume 𝑉 = 𝐴𝑢n𝛥𝑡 = 𝐴𝑢 cos 𝜃 𝛥𝑡. The number of molecules 𝑁o,|,} striking the area 𝐴 
during the time interval 𝛥𝑡 is 
 

𝑁o,|,} = 𝑉𝜌o,|,} = 𝐴𝑢 cos 𝜃 𝛥𝑡𝜌	 ∙ 	𝐹(𝑢)𝑑𝑢
sin 𝜃 𝑑𝜃𝑑𝜙

4𝜋
 

 
We obtain the flux 𝑧coll,o,|,}, i.e. the number of molecules with parameters (𝑢, 𝜃, 𝜙) striking the surface 
per unit time and unit area by dividing by 𝐴𝛥𝑡. 
 

𝑧coll,o,|,} =
𝑁o,|,}
𝐴𝛥𝑡

=
𝜌
4𝜋

𝑢𝐹(𝑢)𝑑𝑢 cos 𝜃 sin 𝜃 𝑑𝜃𝑑𝜙 
 
Note that 𝑧coll,o,|,} ∝ 𝑢N, since 𝑢𝐹(𝑢) ∝ 𝑢N. The distributions 𝐹(𝑢) and 𝑢𝐹(𝑢) are plotted below, 
showing that the maximum of 𝑢𝐹(𝑢) is shifted to higher values of u. This reflects the fact that faster 
molecules collide more frequently with the surface than slow ones. 
 

uxΔt

uΔt
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Finally, we obtain the total flux 𝑧coll by integrating over all molecular speeds 𝑢 as well as all angles 𝜃 
and 𝜙.3 Note that only molecules with 0 ≤ 𝜃 ≤ 𝜋/2 will hit the surface. 
 

𝑧coll =
𝜌
4𝜋

P 𝑢𝐹(𝑢)𝑑𝑢
K

+

P cos 𝜃 sin 𝜃 𝑑𝜃

v/!

+

P 𝑑𝜙
!v

+

=
𝜌
4
〈𝑢〉 = ¿𝑘q𝑇

2𝜋𝑚
𝜌 

 
Quiz: Find a simplified derivation of the same result by using the one-dimensional velocity distribution. 
 
Quiz: Calculate the collision flux of nitrogen at 300 K and 1 bar. 
 
 
5.2 EFFUSION 
 
Atkins, P. & de Paula, J. Atkins’ Physical Chemistry Ch. 19A. (Oxford University Press, 2014). 
 
Effusion occurs when gas escapes through a small hole into vacuum. According to Graham’s law, the 
rate of effusion 𝑘effusion is proportional to ¢1/𝑀, where 𝑀 is the molar mass of the gas. We can easily 
verify this empirical law from the above. For a hole with surface area 𝐴, we find 
 

𝑘effusion = 𝑧coll𝐴 = ¿𝑘q𝑇
2𝜋𝑚

𝜌𝐴 ∝ ¿
1
𝑚

 

 
This derivation assumes that the presence of the hole does not change the velocity distribution of the 
gas molecules, which is the condition for effusive flow to occur. This condition will be fulfilled if no 
collisions between gas molecules occur inside the hole, so that the velocity distribution of the molecules 
passing through the hole is not altered by the presence of the hole. This is the case, if the hole diameter 
is small compared to the mean free path of the gas molecules, i.e. the average distance between the 
collision of two gas molecules. 
Through substitution with the ideal gas law, 𝜌 = 𝑝/(𝑘q𝑇), we obtain 
 

𝑘effusion = ¿𝑘q𝑇
2𝜋𝑚

𝜌𝐴 =
𝑝𝐴

¢2𝜋𝑚𝑘q𝑇
 

 
This equation is the basis for the Knudsen method, which is used to determine the vapor pressure of 
liquids and solids, particularly of low vapor pressure compounds. When a gas of known molecular mass 
effuses from a closed container through a small hole of known surface area, the mass loss is proportional 
to the vapor pressure of the compound. 
 

 
3 ∫ cos 𝜃 sin 𝜃 𝑑𝜃v/!

+ = *
!
 

pr
ob
ab
ili
ty
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5.3 COLLISION RATE AND MEAN FREE PATH 
Here we derive an expression for the frequency at which gaseous molecules collide. This collision rate, 
together with the probability that a collision leads to a chemical reaction, will then later allow us to 
calculate the speed of gas-phase chemical reactions. 
We make the simplifying assumption that the molecules are hard spheres of diameter 𝑑, so that a 
collision occurs if the distance of two molecules is smaller than 𝑑, as illustrated below for a molecule 
moving from the left to the right. 
 

 
 
We can see that this molecule will collide with every other molecule located within a cylinder of cross 
section 𝜎 = 𝜋𝑑!. We call this quantity 𝜎 the collision cross section. Within a time 𝛥𝑡, a molecule on 
average sweeps out a cylinder of volume 𝜎〈𝑢〉𝛥𝑡, where we have used the average speed 〈𝑢〉 as derived 
above. Let us (wrongly) assume for the moment that all the other molecules are stationary. For a given 
gas density 𝜌, the molecule thus undergoes 𝛥𝑁coll = 𝜌𝜎〈𝑢〉𝛥𝑡 collisions. The collision rate 𝑧� thus 
becomes 
 

𝑧� =
𝛥𝑁coll
𝛥𝑡

= 𝜌𝜎〈𝑢〉 = 𝜌𝜎¿
8𝑘q𝑇
𝜋𝑚

 

 
As the molecules within the collision cylinder are not stationary, however, we need to modify this result. 
Instead of the average speed of a single molecule 〈𝑢〉, we should rather use the average relative speed 
of two molecules 〈𝑢�q〉 = 〈|𝑢Ø⃗ � − 𝑢Ø⃗ q|〉. By going to a center of mass coordinate system, we will derive 
this average speed difference to be 
 

〈𝑢�q〉 = 〈|𝑢Ø⃗ � − 𝑢Ø⃗ q|〉 = ¿
8𝑘q𝑇
𝜋𝜇

 

 
where 𝜇 = '$'%

'$R'%
 is the reduced mass. With 𝑚* = 𝑚! = 𝑚, we obtain 𝜇 = 𝑚/2, so that 

 

𝑧� = 𝜌𝜎〈𝑢�q〉 = √2𝜌𝜎〈𝑢〉 = √2𝜌𝜎¿
8𝑘q𝑇
𝜋𝑚

= 𝜌𝜎¿
8𝑘q𝑇
𝜋𝜇

 

 
Quiz: Calculate the collision rate of a single nitrogen molecule at 300 K and 1 bar, assuming 𝜎 =
0.450 ∙ 10$*�	m!. 
 
A concept closely connected to the collision rate 𝑧� is the mean free path, i.e. the average distance a 
molecule travels between collisions 
 

𝑙 =
〈𝑢〉
𝑧�

=
1

√2𝜌𝜎
 

 
Quiz: Calculate the mean free path of nitrogen at 300 K and 1 bar, assuming 𝜎 = 0.450 ∙ 10$*�	m!. 
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We can also arrive at the same expression for the mean free path with a different approach. The number 
𝑑𝑁 of collisions that a molecule will undergo in a collision cylinder of length 𝑑𝑥 is 𝑑𝑁 = 𝜎𝜌𝑑𝑥, so that 
the average number of collisions per unit length becomes 2p

20
= 𝜎𝜌. A beam of 𝑛 molecules crossing a 

gaseous sample thus gets attenuated (i.e. the number of unscattered molecules decreases) with a rate 
 

𝑑𝑛
𝑑𝑥

= −𝑛
𝑑𝑁
𝑑𝑥

= −𝑛𝜎𝜌 
 
which upon integration becomes 
 

𝑛 = 𝑛+𝑒$��0 = 𝑛+𝑒
$0y  

 
where the mean free path 𝑙 arises as the *

�
 attenuation length. Note that in this derivation, the mean free 

path 𝑙 is missing a factor of 1/√2 because we have again incorrectly assumed that the molecules in the 
collision cylinder are stationary. 
The probability 𝑝(𝑥) for a molecule to undergo a collision at 𝑥 is 
 

𝑝(𝑥) = −
𝑑𝑛
𝑑𝑥
𝑛+

=
1
𝑙
𝑒$

0
y  

 
which we can use to verify that the mean free path 〈𝑥〉 = ∫ 𝑥𝑝(𝑥)𝑑𝑥K

+ = 𝑙. 
 
By measuring the attenuation of a molecular beam crossing a gas cell as a function of pressure, one can 
determine the collision cross section. 
 

 
 
 
Another important quantity is the total collision frequency. In a pure gas, the total frequency of 
collisions per unit volume is 
 

𝑧�� =
1
2
𝜌𝑧� =

1
2
𝜌!𝜎¿

8𝑘q𝑇
𝜋𝜇
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where the factor *

!
 is introduced to avoid double counting collisions. In a mixture of gases, the total 

frequency of collisions per unit volume between the molecules of type A with those of type B is 
 

𝑧�q = 𝜎�q〈𝑢�q〉𝜌�𝜌q 
 

with 〈𝑢�q〉 = É�/B5v�
, 𝜇 = '$'%

'$R'%
, and 𝜎�q = 𝜋 e2ER2B

!
f
!
. 

 
 
5.4 CENTER OF MASS COORDINATES 
Bimolecular collisions are most easily described in center of mass coordinates, which we will derive 
here. To this end, we carry out the following coordinate transformation 
 

(𝒗�, 𝒗q) → (𝒗I', 𝒘�q) 
 
where (𝒗�, 𝒗q) is the coordinate system given by the velocities of the molecules, and the new coordinate 
system (𝒗I', 𝒘�q) describes their motion in terms of the center of mass velocity 𝒗I' as well as the 
relative velocity of both molecules 𝒘�q. This will then also allow us to determine the average relative 
speed of two molecules that we have used above for the calculation of the collision rate. 
 
The center of mass 𝑐𝑚 of two molecules of masses 𝑚� and 𝑚q is the mass weighted average of their 
position vectors. 
 

𝒓I' =
𝑚�𝒓� +𝑚q𝒓q
𝑚� +𝑚q

 

 
 
By taking the time derivative, we obtain 
 

𝑑𝒓I'
𝑑𝑡

= 𝒗I' =
𝑚�𝒗� +𝑚q𝒗q
𝑚� +𝑚q

 

 
which shows that the center of mass is moving with a constant velocity 𝒗I'. By subtracting the velocity 
of the center of mass 𝒗I' from the velocities of the molecules 𝒗�,q, we obtain the velocities 𝒘�,q in 
the center of mass frame, i.e. in a moving coordinate system whose origin is the center of mass. 
 

𝒗� = 𝒗I' +𝒘� 
𝒗q = 𝒗I' +𝒘q 

 
In these expressions, we wish to replace 𝒘� and 𝒘q with the relative velocity 𝒘�q of the molecules in 
the center of mass frame 
 

𝒘�q = 𝒘� −𝒘q = (𝒘� + 𝒗I') − (𝒘q + 𝒗I') = 𝒗� − 𝒗q = 𝒗�q 
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The sum of the momenta in the center of mass frame is zero. 
 
𝑚�𝒘� +𝑚q𝒘q = 𝑚�(𝒗� − 𝒗I') + 𝑚q(𝒗q − 𝒗I') = 	𝑚�𝒗� +𝑚q𝒗q − (𝑚� +𝑚q)𝒗I' = 𝟎 

 
This expression allows us to eliminate either 𝒘� or 𝒘q from the equation 𝒘�q = 𝒘� −𝒘q, and we 
obtain 

𝒘�q = 𝒘� +
𝑚�

𝑚q
𝒘� = 𝑚�𝒘�

𝑚� +𝑚q

𝑚�𝑚q
 

 
We introduce the reduced mass 
 

𝜇 =
𝑚�𝑚q

𝑚� +𝑚q
 

 
so that we can write 
 

𝜇𝒘�q = 𝑚�𝒘� = −𝑚q𝒘q 
 
We thus find the following equations describing the coordinate transformation: 
 

𝒗� = 𝒗I' + 𝜇𝒘�q/𝑚� 
𝒗q = 𝒗I' − 𝜇𝒘�q/𝑚q 

 
The total kinetic energy of the system is given by 
 

𝐸kin =
1
2
𝑚�𝒗�! +

1
2
𝑚q𝒗q! =

1
2
𝑚� }𝒗I' +

𝜇𝒘�q
𝑚�

~
!
+
1
2
𝑚q }𝒗I' −

𝜇𝒘�q
𝑚q

~
!
	

= 	
1
2
(𝑚� +𝑚q)𝑣I'! +

1
2
𝜇𝑤�q! + 𝒗I'𝜇𝒘�q − 𝒗I'𝜇𝒘�q	

=
1
2
(𝑚� +𝑚q)𝑣I'! +

1
2
𝜇𝑣�q! = 𝐸kin,	cm + 𝐸kin,	AB 

 
We can thus see that the total kinetic energy is composed of the kinetic energy involved in the motion 
of the center of mass, which is associated with the mass 𝑚� +𝑚q; and that of relative motion of the 
molecules in the center of mass frame, which is associated with the reduced mass 𝜇. 
As the two contributions to the kinetic energy suggest, we can view the collision as the relative motion 
of the molecules superimposed on the center of mass motion. 
 

 
 
After the collision, we obtain for the center of mass velocity of the product molecules C and D (whose 
masses may differ from those of the reactants) 
 

𝒗I' =
𝑚�𝒗� +𝑚�𝒗�
𝑚� +𝑚�
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Since the total momentum must be conserved 
 

𝑚�𝒗� +𝑚�𝒗� = 𝑚�𝒗� +𝑚q𝒗q 
 
we find that the center of mass velocity does not change during the collision. Therefore, the kinetic 
energy of the center of mass motion 𝐸kin,	cm =

*
!
(𝑚� +𝑚q)𝒗I'!  remains unchanged, so that we can 

neglect it if we want to describe a chemical reaction. Only the kinetic energy associated with the relative 
motion 𝐸kin,	AB =

*
!
𝜇𝒗�q!  is available for the reaction. While the relative velocity may change during 

the course of a collision, the sum of the relative kinetic energy and internal energy must remain constant. 
 

𝐸internal,	A,B + 𝐸kin,	AB = 𝐸internal,	C,D + 𝐸kin,	CD 
 
The expression for the kinetic energy will be useful in deriving the average relative speed of both 
molecules. We begin by writing down the velocity distribution of the two molecules, which is simply 
the product of two Maxwell-Boltzmann distributions. 
 

𝑓<𝑣�0 , 𝑣�m , 𝑣�n, 𝑣q0 , 𝑣qm , 𝑣qnA𝑑𝑣�0𝑑𝑣�m𝑑𝑣�n𝑑𝑣q0𝑑𝑣qm𝑑𝑣qn	

= 	
(𝑚�𝑚q)

N
!

(2𝜋𝑘q𝑇)N
𝑒$

'EgE
%R'BgB

%

!/B5 𝑑𝑣�0𝑑𝑣�m𝑑𝑣�n𝑑𝑣q0𝑑𝑣qm𝑑𝑣qn	

 
 
After carrying out the coordinate transformation, we obtain4 
 
𝑓<𝑣I',0 , 𝑣I',m , 𝑣I',n, 𝑣�q0 , 𝑣�qm , 𝑣�qnA𝑑𝑣I',0𝑑𝑣I',m𝑑𝑣I',n𝑑𝑣�q,0𝑑𝑣�q,m𝑑𝑣�q,n	

=
(𝑚�𝑚q)

N
!

(2𝜋𝑘q𝑇)N
𝑒$

('ER'B)gFG% R�gEB
%

!/B5 𝑑𝑣I',0𝑑𝑣I',m𝑑𝑣I',n𝑑𝑣�q,0𝑑𝑣�q,m𝑑𝑣�q,n	

= (𝑚�𝑚q)
N
! á

1

(2𝜋𝑘q𝑇)
N
!
𝑒$

('ER'B)gFG%
!/B5 𝑑𝑣I',0𝑑𝑣I',m𝑑𝑣I',nâ á

1

(2𝜋𝑘q𝑇)
N
!
𝑒$

�gEB
%

!/B5𝑑𝑣�q,0𝑑𝑣�q,m𝑑𝑣�q,nâ		 

 
We eliminate the terms containing the center of mass part by integrating over all center of mass 
velocities, with 

P P P
1

(2𝜋𝑘q𝑇)
N
!
𝑒$

('ER'B)gFG%
!/B5 𝑑𝑣I',0𝑑𝑣I',m𝑑𝑣I',n

K

$K

K

$K

K

$K

=
1

(𝑚� +𝑚q)
N
!
 

 
We are left with 
 

𝑓<	𝑣�q0 , 𝑣�qm , 𝑣�qnA𝑑𝑣�q,0𝑑𝑣�q,m𝑑𝑣�q,n = }
𝜇

2𝜋𝑘q𝑇
~
N
!
𝑒$

�gEB
%

!/B5𝑑𝑣�q,0𝑑𝑣�q,m𝑑𝑣�q,n 

 
As in the derivation of the Maxwell-Boltzmann distribution, we transform to spherical coordinates5 
 

𝑓(	𝑣AB, 𝜙, 𝜃)𝑑𝑣AB𝑑𝜙𝑑𝜃 = }
𝜇

2𝜋𝑘q𝑇
~
N
!
𝑣AB! 𝑒

$�gEB
%

!/B5 sin 𝜃 𝑑𝑣AB𝑑𝜙𝑑𝜃 

 

 
4 𝑑𝑣�0𝑑𝑣�m𝑑𝑣�n𝑑𝑣q0𝑑𝑣qm𝑑𝑣qn = 𝑑𝑣I',0𝑑𝑣I',m𝑑𝑣I',n𝑑𝑣�q,0𝑑𝑣�q,m𝑑𝑣�q,n (Derive!) 
5 𝑑𝑣�q,0𝑑𝑣�q,m𝑑𝑣�q,n = 𝑣AB! sin 𝜃 𝑑𝑣AB𝑑𝜙𝑑𝜃 
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and integrate over all angles6 to obtain 
 

𝑓(	𝑣AB)𝑑𝑣AB = 4𝜋 }
𝜇

2𝜋𝑘q𝑇
~
N
!
𝑣AB! 𝑒

$�gEB
%

!/B5𝑑𝑣AB 

 
This is the distribution of the relative speed 𝑣AB of two molecules, which is a Maxwell-Boltzmann 
distribution containing the reduced mass 𝜇 instead of the molecular mass. 
 
For 𝑚* = 𝑚! = 𝑚, we find that 𝜇 = 𝑚/2. Therefore 〈𝑣AB〉 = √2〈𝑣A〉, which we have used above. 
 
 
5.5 DYNAMICS OF BIMOLECULAR COLLISIONS – REACTIVE HARD SPHERES 
 
Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 8. (Prentice Hall, 
1989). 
 
In this section, we will study the dynamics of bimolecular collisions. Based on the results from the 
kinetic theory of gases, we can derive simple expressions for the rate constants of bimolecular gas-
phase reactions. Initially, we will assume that the reacting molecules are hard spheres. We will then 
obtain a more accurate picture by considering more complex intermolecular potentials. Finally, we will 
discuss solving Hamilton’s equations of motions on the potential energy surface and solving 
Schrödinger’s equation to obtain a quantum mechanical solution. 
  
Above, we have derived the collision rate per unit volume of two molecules 
 

𝑧�q = 𝜎�q〈𝑢�q〉𝜌�𝜌q 
 

with 〈𝑢�q〉 = É�/B5v�
, 𝜇 = '$'%

'$R'%
, and 𝜎�q = 𝜋 e2ER2B

!
f
!
. Assuming every collision leads to a reaction, 

we obtain a rate constant for the bimolecular reaction 
 

𝑘(𝑇) = 𝜎�q〈𝑢�q〉 = 𝜋 }
𝑑� + 𝑑q

2 ~
!

∙ ¿
8𝑘q𝑇
𝜋𝜇

 

 
This rate grossly overestimates experimentally determined reaction rates, since for most gas-phase 
reactions, not every collision leads to a chemical reaction. Moreover, the model predicts that 𝑘(𝑇) ∝
√𝑇, whereas experimentally, one typically finds Arrhenius behavior with 𝑘(𝑇) ∝ 𝑒$3act//B5. 
The reactive hard spheres model addresses some of these issues by taking a refined view of the 
molecular interaction. The sketch below depicts a collision between two molecules 𝐴 and 𝐵, which we 
assume to be hard spheres. The molecules collide at a relative velocity 𝒗�q = 𝒗, i.e. with an energy 
𝐸 = *

!
𝜇𝑣!. The minimum distance is 𝑑 = *

!
(𝑑� + 𝑑q). To describe the collision geometry, we 

furthermore introduce the impact parameter 𝑏, which describes the center distance of the spheres in 
the direction orthogonal to the velocity vector 𝒗. 
 

 
6 ∫ 𝑑𝜙∫ sin 𝜃 𝑑𝜃v

+
!v
+ = 4𝜋 
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The velocity vector 𝒗 can be decomposed into a tangential component 𝒗∥ (parallel to the tangent plane 
of the two spheres) and a component 𝒗� that is orthogonal to it. We can similarly decompose the kinetic 
energy 
 

𝐸 =
1
2
𝜇𝑣∥! +

1
2
𝜇𝑣�! = 𝐸∥ + 𝐸� 

 
where only the second term 𝐸� =

*
!
𝜇𝑣�! is assumed to be available to drive the reaction as it arises from 

motion along the line of centers. With the angle 𝜃 between the velocity vectors 𝒗 and 𝒗�, we find that 
 

𝐸�
𝐸
=
𝑣�!

𝑣!
= cos! 𝜃 = 1 − sin! 𝜃 = 1 −

𝑏!

𝑑!
 

 
Furthermore, the model assumes that the reaction will only occur above a certain minimum collision 
energy 𝐸∗ along the line of centers. The energy dependent reaction probability 𝑃4(𝐸�) is therefore 
defined to be 
 

𝑃4(𝐸�) = �0	𝑝 		
if	𝐸� < 𝐸∗
if	𝐸� ≥ 𝐸∗ 

 
where above threshold, the reaction occurs with a probability 𝑝. This leads to a reaction cross section 
that depends both on the energy 𝐸 as well as the impact parameter 𝑏. Since we usually cannot control 
the impact parameter, we integrate to obtain the reaction cross section 𝜎4(𝐸) that only depends on the 
energy 
 

𝜎4(𝐸) = P 𝑃4(𝐸�)
K

+

⋅ 2𝜋𝑏	𝑑𝑏 

 
We can see that for 𝐸 < 𝐸∗, 𝜎4(𝐸) = 0. 

For 𝐸 ≥ 𝐸∗, we have to calculate the integral. From 𝐸� = 𝐸(1 − �%

2%
) ≥ 𝐸∗, we obtain 𝑏 ≤ 𝑑É1 − 3∗

3
, 

so that we can change the integral boundaries. 

𝜎4(𝐸) = P 𝑝

2�*$3
∗

3

+

⋅ 2𝜋𝑏𝑑𝑏 = 𝜋𝑑!𝑝(1 −
𝐸∗

𝐸
) 

 
We thus obtain 
 

𝜎4(𝐸) = ±
0	

𝜋𝑑!𝑝(1 −
𝐸∗

𝐸
)		
if	𝐸 < 𝐸∗
if	𝐸 ≥ 𝐸∗ 

 

θ
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To obtain the thermal rate coefficient 𝑘(𝑇) = 〈𝜎4(𝐸)𝑣(𝐸)〉, we average over a thermal population of 
molecules as given by the Maxwell-Boltzmann distribution 𝐹(𝑣) for the relative speed 
 

𝑘(𝑇) = P 𝜎4(𝐸)𝑣 ⋅ 𝐹(𝑣)𝑑𝑣
K

+

= P 𝜎4(𝐸)𝑣 ⋅ 4𝜋 }
𝜇

2𝜋𝑘q𝑇
~
N
!
𝑣!𝑒$

�g%
!/B5𝑑𝑣

K

+

 

 
We transform the integral7 and change the boundaries to reflect that the cross section is zero for 𝐸 < 𝐸∗ 
 

𝑘(𝑇) =
1
𝑘q𝑇

}
8

𝜋𝜇𝑘q𝑇
~
*
!
P 𝐸𝜎4(𝐸)𝑒

$ 3
/B5𝑑𝐸

K

+

=
1
𝑘q𝑇

}
8

𝜋𝜇𝑘q𝑇
~
*
!
P 𝜋𝑑!𝑝(𝐸 − 𝐸∗)𝑒$

3
/B5𝑑𝐸

K

3∗
 

 
After integration, we obtain8 

𝑘(𝑇) = 𝜋𝑑! }
8𝑘q𝑇
𝜋𝜇 ~

*
!
𝑝𝑒$

3∗
/B5 

 
Note that the rate constant is a product of three factors. 
 

hard-sphere cross section 	×	 mean velocity 	×	 Arrhenius factor 
 

If we compare with the Arrhenius law, 𝑘Arrhenius = 𝐴𝑒$
)I
DB+, with 2(�� /Arrhenius)

2(*/5)
= − 3I

/B
, we find a similar 

temperature dependence 
 

𝑑(ln 𝑘)
𝑑(1/𝑇)

= −
𝑇
2
−
𝐸∗

𝑘q
 

 
and see that the threshold energy 𝐸∗ corresponds to the Arrhenius activation energy 𝐸%, while the 
product of hard-sphere cross section and mean velocity corresponds to the prefactor. With a reaction 
probability of 𝑝 = 1, the model tends to overestimate the rate constant. Therefore,  𝑝 < 1 is introduced 
as an ad hoc correction to account for collisions that possess sufficient energy, but still are not reactive. 
The variable 𝑝 is called the steric factor, encapsulating the notion that not all molecular orientations in 
a collision will lead to a reaction. We can already guess that ultimately, this steric factor is related to 
the entropy of activation. 
 
 
 

 
7 𝐸 = *

!
𝜇𝑣!, 𝑑𝑣 = 23

�g
 

8 ∫ 𝑥𝑒$
>
I𝑑𝑥K

+ = 𝑎! 

 

πd2p
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5.6 AN APPLICATION TO TOLMAN’S THEOREM 
 
Laidler, K. J. Chemical Kinetics, Section 3.1.2. (Prentice Hall, 1987). 

The thermal rate constant for bimolecular reactions derived above allows us to demonstrate Tolman’s 
theorem, which provides insights into the nature of the activation energy of a chemical reaction. It states 
that the activation energy of a molecule 𝐸% is equal to the difference between the mean energy of the 
reacting molecules 〈𝐸4〉 and the mean energy of all molecules 〈𝐸〉. 
 

𝐸% = 〈𝐸4〉 − 〈𝐸〉 
 
We will show that this holds for a bimolecular gas-phase reaction with an energy dependent reaction 
cross section 𝜎4(𝐸). For the thermal rate constant 𝑘(𝑇), we found above 
 

𝑘(𝑇) =
1
𝑘q𝑇

}
8

𝜋𝜇𝑘q𝑇
~
*
!
P 𝐸𝜎4(𝐸)𝑒

$ 3
/B5𝑑𝐸

K

+

=
1
𝑘q𝑇

}
8

𝜋𝜇𝑘q𝑇
~
*
!
P 𝑔(𝐸)𝑑𝐸
K

+

 

 
where we have introduced the function 𝑔(𝐸), which is proportional to the reaction rate 𝑘(𝐸) at one 
specific energy. 
 

𝐸% = 𝑘q𝑇!
𝑑 ln 𝑘(𝑇)
𝑑𝑇

= −
3
2
𝑘q𝑇 + 𝑘q𝑇!

𝑑 ln ∫ 𝑔(𝐸)𝑑𝐸K
+
𝑑𝑇

 
 
We can simplify 
 

𝑑 ln∫ 𝑔(𝐸)𝑑𝐸K
+
𝑑𝑇

=
𝑑
𝑑𝑇 ∫ 𝑔(𝐸)𝑑𝐸K

+

∫ 𝑔(𝐸)𝑑𝐸K
+

=
∫ 𝐸

𝑘q𝑇!
𝑔(𝐸)𝑑𝐸K

+

∫ 𝑔(𝐸)𝑑𝐸K
+

 

 
so that we find 
 

𝐸% =
∫ 𝐸𝑔(𝐸)𝑑𝐸K
+

∫ 𝑔(𝐸)𝑑𝐸K
+

−
3
2
𝑘q𝑇 = 〈𝐸4〉 − 〈𝐸〉 

 
which is indeed Tolman’s theorem. 
 
The energy distribution of all molecules 𝑓(𝐸) as well as that of the reactive molecules 𝑔(𝐸) is shown 
below together with the collision cross section 𝜎(𝐸) for the reactive hard sphere model. It is apparent 
that the mean energies differ by the chosen threshold energy 𝐸∗ = 10	kJ/mol. 
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If we calculate the activation energy 𝐸% for the reactive hard sphere model (with 𝑝 = 1), we find indeed  
 

𝐸% =
∫ 𝐸𝑔(𝐸)𝑑𝐸K
+

∫ 𝑔(𝐸)𝑑𝐸K
+

−
3
2
𝑘q𝑇 =

∫ 𝐸!𝜋𝑑! }1 − 𝐸
∗

𝐸 ~𝑒
$ 3
/B5𝑑𝐸K

3∗

∫ 𝐸𝜋𝑑! e1 − 𝐸
∗

𝐸 f 𝑒
$ 3
/B5𝑑𝐸K

3∗

−
3
2
𝑘q𝑇	

=
∫ (𝐸! − 𝐸𝐸∗)𝑒$

3
/B5𝑑𝐸K

3∗

∫ (𝐸 − 𝐸∗	)𝑒$
3
/B5𝑑𝐸K

3∗

−
3
2
𝑘q𝑇 = 𝐸∗ −

3
2
𝑘q𝑇 

 
 
5.7 DYNAMICS OF BIMOLECULAR COLLISIONS – TWO-BODY CLASSICAL SCATTERING 
 
Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 8. (Prentice Hall, 
1989). 
 
In this section, we will develop a classical description of bimolecular collisions in order to derive 
differential and total scattering cross sections. We assume that the particles interact through a central 
potential 𝑈(𝑟), where 𝑟 is the distance between the particles. Strictly speaking, such a description is 
still only valid for simple systems, such as the collision of two rare gas atoms, whereas many chemical 
reactions of interest will involve more than two atoms. However, analytical solutions only exist for the 
two-body problem. Most importantly, the description of two-body scattering with a central potential 
will allow us to develop general concepts that will be useful even for more complex bimolecular 
reactions. 
 
We begin by considering the total energy of the two colliding particles 𝐴 and 𝐵, which consists of 
kinetic, potential, and internal energy. 
 

𝐸 =
1
2
𝑚𝑣�! +

1
2
𝑚𝑣q! + 𝑈(𝑟) + 𝐸�,	internal + 𝐸q,	internal 

 
We can distinguish different types of collisions. In an elastic collision, the internal energies of the 
particles are left unchanged, whereas in an inelastic collision, translational energy is converted into 
internal energy or vice versa. Finally, in a reactive collision, the molecular species also change their 
nature. 
 
Due to the symmetry of the central potential 𝑈(𝑟) through which the particles interact, it is convenient 
to describe the collision in a fixed-center-of-force coordinate system. As before, we transform into a 
center of mass coordinate system, in which a composite particle 𝐴𝐵 of reduced mass 𝜇 =
𝑚�𝑚q/(𝑚� +𝑚q) appears to move along the trajectory 𝒓(𝑡) = 𝒓�(𝑡) − 𝒓q(𝑡). We describe this 
motion in polar coordinates (𝑟, 𝜃, 𝜙) with the origin of the coordinate system coinciding with the center 
of the potential 𝑈(𝑟). The scattering geometry in the fixed-center-of-force coordinate system together 
with the pertinent variables is sketched below. 
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The composite particle 𝐴𝐵 has coordinates (𝑟, 𝜃, 𝜙) and travels at velocity 2r

2-
. The particle is thought 

to originate at infinite distance, travelling parallel to the 𝑥 axis with an impact parameter 𝑏. The 
interaction with the central potential leads to a deflection of the trajectory by an angle 𝜒(𝑏) that is a 
function of the impact parameter. Note that for a spherical potential 𝑈(𝑟), the scattering process is 
confined to a plane, so that the azimuthal angle 𝜙 does not change during the collision and the entire 
scattering geometry has cylindrical symmetry. We will therefore find that there is no dependence on 
the azimuthal angle 𝜙. 
Particles originating in the differential surface element 𝑑(𝜋𝑏!) are scattered into a solid angle 𝑑𝛺 =
sin 𝜒 𝑑𝜒𝑑𝜙. Overall, the total particle flux must be conserved, which we can express as follows 
 

𝜎4(𝑣, 𝛤) = P𝑃4(𝑣, 𝑏; 𝛤)	2𝜋𝑏𝑑𝑏 =í𝐼4(𝜒, 𝜙; 𝑣, 𝛤)𝑑𝛺 

 
Here, 𝜎4(𝑣, 𝛤) is the total scattering cross section, with 𝑣 and 𝛤 the particle velocity and internal state, 
respectively. As we have seen before, the total scattering cross section can be obtained by multiplying 
each surface element 𝑑(𝜋𝑏!) = 	2𝜋𝑏𝑑𝑏 with its corresponding reaction probability 𝑃4(𝑣, 𝑏; 𝛤) and 
integrating over all impact parameters. The integral ∫𝑃4(𝑣, 𝑏; 𝛤)	2𝜋𝑏𝑑𝑏 therefore corresponds to the 
incoming beam. We can also obtain the total scattering cross section by integrating the differential cross 
section 𝐼4(𝜒, 𝜙; 𝑣, 𝛤) over the entire solid angle, ∬𝐼4(𝜒, 𝜙; 𝑣, 𝛤)𝑑𝛺. This integral corresponds to the 
scattered beam. 
 
To derive the partial scattering cross section of the elastic collisions of particles interacting through a 
central potential, we first try to find the deflection function 𝜒(𝑏). We begin by writing down the total 
energy of the particle. In Cartesian coordinates, the energy of a particle moving in the 𝑥𝑧-plane is 
 

𝐸 =
1
2
𝜇𝑥̇! +

1
2
𝜇𝑧̇! + 𝑈(𝑟) 

 
We transform into polar coordinates and obtain (prove!) 
 

𝐸 =
1
2
𝜇(𝑟 cos 𝜃)̇ ! +

1
2
𝜇(𝑟 sın 𝜃)̇ ! + 𝑈(𝑟) =

1
2
𝜇𝑟̇! +

1
2
𝜇𝑟!𝜃̇! + 𝑈(𝑟) = ⋯ 

 

𝐸 =
1
2
𝜇𝑣! +

𝐿!

2𝜇𝑟!
+ 𝑈(𝑟) 

 
where 𝐿 = 𝜇𝑣+𝑏 = 𝜇𝑣′𝑏′ is the angular momentum, with 𝑣+ the initial velocity and the primes denoting 
the variables after the collision. 
A particle of non-zero angular momentum 𝐿 ≠ 0 experiences a repulsive force in its radial motion due 
to the rotational energy term �%

!�r%
 that is termed centrifugal barrier. The particle experiences an 

effective potential 
 

𝑈��� =
𝐿!

2𝜇𝑟!
+ 𝑈(𝑟) 
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We derive the trajectory 𝜃(𝑟) from the equations for the conserved quantities, the angular moment 𝐿 
and the energy 𝐸. 
 

𝐿 = 𝜇𝑟!
𝑑𝜃
𝑑𝑡
; 𝑑𝜃 =

𝐿
𝜇𝑟!

𝑑𝑡 

 

𝐸 =
1
2𝜇 }

𝑑𝑟
𝑑𝑡~

!

+
𝐿!

2𝜇𝑟! + 𝑈
(𝑟); 𝑑𝑡 = −ñ

2
𝜇 b𝐸 − 𝑈

(𝑟) −
𝐿!

2𝜇𝑟!dò
$*!
𝑑𝑟 

 
We substitute 𝑑𝑡 to obtain 
 

𝑑𝜃 = −
𝐿
𝜇𝑟!

ñ
2
𝜇
b𝐸 − 𝑈(𝑟) −

𝐿!

2𝜇𝑟!
dò

$*!
𝑑𝑟 

 

Before integrating this equation, we substitute 𝐿 = 𝜇𝑣+𝑏 = 𝑏(2𝜇𝐸)
$
%, where we have used 𝑣+ = É!3

�
. 

This can be seen by realizing that initially, the particle is at infinite distance (𝑟 → ∞), so that its potential 
energy is zero for any well-behaved potential energy function, 𝑈(𝑟 → ∞) = 0. Moreover, the rotational 
energy must be zero, �%

!�(r→K)%
= 0, so that the particle only has kinetic energy, i.e. 

 

𝐸 =
1
2
𝜇𝑣+! 

 
Substitution of 𝐿 gives 
 

𝑑𝜃 = −𝑏
𝑑𝑟

𝑟! ó1 − 𝑈(𝑟)𝐸 − 𝑏
!

𝑟!ô
*
!
 

 
Finally, we obtain 𝜃(𝑟) through integration 
 

𝜃(𝑟) = −𝑏 P
𝑑𝑟

𝑟! ó1 − 𝑈(𝑟)𝐸 − 𝑏
!

𝑟!ô
*
!

r

K
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The sketch of the scattering geometry shows that every trajectory has a point (𝑟I , 𝜃I) at which the 
particle has a minimum distance 𝑟I from the origin and at which 2r

2-
= 0. In other words, the particle 

moves only tangentially, and its energy is composed of potential and rotational energy only. Note that 
because of the symmetry of the potential, the trajectory is symmetric with respect to a line through 
(𝑟I , 𝜃I) and the origin. Therefore, we find for the total deflection angle 𝜒 = 𝜋 − 2	𝜃I, as can be seen in 
the sketch above. 
 

𝜒(𝐸, 𝑏) = 𝜋 − 2	𝜃I = 𝜋 − 2𝑏 P
𝑑𝑟

𝑟! ó1 − 𝑈(𝑟)𝐸 − 𝑏
!

𝑟!ô
*
!

K

rF

 

 
We can now obtain deflection functions for different central potentials. We will again start with the 
hard-sphere potential with 
 

𝑈(𝑟) = �
0 (𝑟 > 𝑑)
∞ (𝑟 ≤ 𝑑) 

 
and 𝑟I = 𝑑 for collisions at any energy. We find 
 

𝜒(𝐸, 𝑏) = 𝜋 − 2𝑏P
𝑑𝑟

𝑟! ó1 − 𝑏
!

𝑟!ô
*
!

K

2

= ⋯ = 2arccos
𝑏
𝑑

 

 
We note that for 𝑏 > 𝑑, the acos function is not defined, and no collision occurs, so that 𝜒(𝐸, 𝑏 > 𝑑) =
0. Moreover, we find that the deflection function is energy independent. Trajectories of hard-sphere 
collisions and the corresponding deflection function are shown below. 
 

  
 
From the deflection function, we can calculate the differential cross section. For hard-sphere collisions, 
𝜒(𝑏) is a monotonic function that maps one specific deflection angle 𝜒 to one specific impact 
parameter 𝑏. In this case, molecules from the annular element 2𝜋𝑏𝑑𝑏 are deflected into the solid angle 
element sin 𝜒 𝑑𝜒∫ 𝑑𝜙!v

+ = 2𝜋 sin 𝜒 𝑑𝜒, and we can write 
 

𝐼(𝐸, 𝜒)|2𝜋 sin 𝜒 𝑑𝜒| = 2𝜋𝑏𝑑𝑏 
 

𝐼(𝐸, 𝜒) =
𝑏

gsin 𝜒 𝑑𝜒𝑑𝑏g	
=

𝑏

õ𝑑(cos 𝜒)𝑑𝑏 õ
= ⋯ =

𝑑!

4
 

 
The differential scattering cross section is thus independent of the energy 𝐸 as well as the angle (in the 
center of mass system). We can integrate the differential cross section 𝐼(𝐸, 𝜒) in order to obtain the 
total cross section 
 



Kinetics & Dynamics 61 

𝜎(𝐸) = 4𝜋
𝑑!

4
= 𝜋𝑑! 

 
which is the hard-sphere collision cross section we derived before. 
 
The Lennard-Jones potential is a frequently used model potential that describes the intermolecular 
interaction more realistically. 
 

𝑈(𝑟) = 4𝜖 óe
𝜎
𝑟
f
*!
− e

𝜎
𝑟
f
�
ô 

 
 

Here, 𝜖 characterizes the depth of the potential well. The e�
r
f
�
 term describes a long-range attraction, 

while the e�
r
f
*!

 term describes the intermolecular repulsion that sets in at short distances. Trajectories 
for the Lennard-Jones potential as well as the deflection function are shown below. 
 

 

 
 
A comparison with the hard-sphere deflection function provides some insights. 
For small impact parameter (𝑏 → 0), the deflection function resembles the hard-sphere one. For these 
head-on collisions, the particle largely interacts with the steep repulsive part of the potential, which it 
encounters at its closest approach. The interaction therefore resembles that of two hard spheres. 
For large impact parameters (𝑏 → ∞), the deflection function approaches zero. Since at large distances, 
the Lennard-Jones potential approaches zero, particles with large impact parameter barely interact, 
which leads to a behavior that resembles that of hard spheres. 
For intermediate impact parameters we observe negative deflection angles 𝜒, which is in stark contrast 
to the hard-sphere collisions. For decreasing impact parameter, the particle increasingly interacts with 
the attractive part of the potential, which leads to trajectories that wrap around the scattering center. 
This behavior is even more pronounced for lower energies of the particle 𝐸. 
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The differential cross section is obtained from 𝐼(𝐸, 𝜒) = 𝑏/ g2 ����
2�

g	and is plotted below for 𝐸 ≈ 𝜖. 
 

 
 
We see that for small impact parameters (𝑏 → 0, 𝜒 → 𝜋), the differential cross section 𝐼(𝜒) approaches 
the constant hard sphere value 𝑑!/4, which agrees with our discussion above. For large impact 
parameters (𝑏 → ∞, 𝜒 → 0), the differential cross section diverges, since g2 ����

2�
g → 0 (dashed line). 

Similarly, we find a singularity (dashed line) at intermediate impact parameters, when the deflection 
function goes through a minimum at the so-called rainbow angle 𝜒r, so that g2 ����

2�
g → 0. The term 

“rainbow angle” alludes to mathematical similarities in light scattering from rain droplets that leads to 
the appearance of rainbows. The differential cross section can of course not become infinite. It turns 
out that the singularities in our calculation arise from the classical treatment of the collision process. A 
quantum mechanical treatment leads to the solid line shown above, in which the singularities are 
smoothed out by the quantum nature of the colliding particles. 
 
By measuring differential cross sections, it is possible to deduce the intermolecular potential by means 
of the scattering theory derived above. We can see how this can be achieved if we integrate the equation 
for the differential cross section in a range of 𝜒 values in which 𝜒(𝑏) is monotonic, for example at 
angles larger than the rainbow angle. 
 

P 𝐼(𝐸, 𝜒)|2𝜋 sin 𝜒 𝑑𝜒|
v

�!

= − P 2𝜋𝑏𝑑𝑏

�(v).+

�(�!)

= 𝜋𝑏(𝜒+)! 

 
This gives us a means to obtain the deflection function, which is connected to the potential 𝑈(𝑟) through 
the equations we derived above. 

 

small b

large b
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6 UNIMOLECULAR REACTION DYNAMICS 
 
Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 11. (Prentice Hall, 
1989). 
 
A unimolecular reaction follows the general equation 
 

A∗ → products 
 
where the asterisk indicates that in order for a reaction to occur, the molecule A must possess a 
sufficiently high vibrational energy. We can distinguish three types of unimolecular reactions based on 
the features of the potential energy surface involved. This is illustrated below with examples for each 
type of potential energy surface. 
 

 
 
A key issue for understanding unimolecular reactions is the mechanism of how a molecule acquires 
sufficient energy to overcome the reaction barrier. In 1919, Perrin suggested that the molecules are 
energized by absorbing radiation from the walls of the reaction vessel. Such a dissociation mechanism 
has indeed been found to occur under special circumstances – for gaseous molecules at very low 
pressures. In the absence of collisions, the predominant dissociation mechanism involves the absorption 
of a large number of infrared photons that originate from black body radiation of the walls of the 
container, so that the molecules are excited to energies above the barrier. 
However, at moderate gas pressures, unimolecular reaction rates are found to depend on pressure, which 
contradicts Perrin’s hypothesis. Moreover, the rates do not depend on the surface to volume ratio of the 
container or the presence of absorbers. This suggests that the molecules are activated by collisions. 
 
6.1 LINDEMANN-HINSHELWOOD THEORY OF THERMAL UNIMOLECULAR REACTIONS 
 
This is the basis for the Lindemann theory (1922), which assumes that both activation and deactivation 
of molecules A occurs in a collision with a collision partner M: 
 

A +M
𝑘*
	→	
	
A∗ +M 

A∗ +M
𝑘$*
	→	
	
A + M 

A∗
𝑘!
	→	
	
products 

Po
te

nt
ia

l E
ne

rg
y

Reaction Coordinate

a) Isomerization b) Dissociation with
barrier for recombination

c) Dissociation without
barrier for recombination

Reaction Coordinate Reaction Coordinate

CH3NC CH3CN C2H5Cl HCl + C2H4 C2H6 2 CH3
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Implicit in this model is the assumption that all A∗ +M collisions are “strong”, i.e., they all de-energize 
the activated species A∗. Under this strong collision assumption, the deactivation rate 𝑘$* can then be 
simply calculated from the gas-kinetic collision rate 𝑧AM = 𝜎AM〈𝑢AM〉𝜌A𝜌M = 𝑘$*[A][M]. 
 
If we apply the steady-state approximation to the concentration [A∗], we obtain the overall rate R of the 
unimolecular rection: 
 

𝑅 = 𝑘o()[A] = 𝑘![A∗] =
𝑘*𝑘![A][M]
𝑘$*[M] + 𝑘!

 

 
At low pressure ([M] → 0), we find 
 

𝑘o() = 𝑘+ = 𝑘*[M] 
 
Here, the collisional activation is the rate-determining step, so that the rate 𝑘o() becomes linearly 
dependent on the pressure. 
 
At high pressure ([M] → ∞), we find instead that the rate becomes pressure independent: 
 

𝑘o() = 𝑘K =
𝑘*𝑘!
𝑘$*

 

 
Here, the activated and ground state species A∗ and A are in a pre-equilibrium with 
 

[A∗]
[A]

=
𝑘*
𝑘$*

 

 
so that the unimolecular rate constant 𝑘o() simply becomes the probability of the molecule A being 
energized multiplied by the rate constant for the reaction 𝑘!. 
 
A log-log plot of the unimolecular rate constant, a so-called Lindemann plot 
 

𝑘o() =
𝑘K

1 + 𝑘K
𝑘*[M]

 

 
is shown below for the cis/trans isomerization of 2-butene at 496 °C. 
 

 
 
The pressure 𝑝$

%
∝ [M]$

%
= /O

/$
 is marked at which /PQ"

/O
= *

!
. 
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While we have already derived the deactivation rate 𝑘$* = 𝜎AM〈𝑢AM〉 from the gas-kinetic collision 
rate 𝑧AM, we will now also try to obtain expressions for the remaining two rate constants, 𝑘* and 𝑘!. 
We could estimate the activation rate 𝑘* from the reactive-hard-spheres model, which predicts the rate 
at which collisions occur with a line-of-centers energy 𝐸�exceeding a given threshold energy 𝐸∗ 
 

𝑘(𝑇) = 𝜎AM〈𝑢AM〉𝑒
$ 3∗
/B5 = 𝑘$*𝑒

$ 3∗
/B5 

 
where we assume that the threshold energy 𝐸∗ is equal to the high-pressure activation energy 𝐸+ of the 
reaction (with the steric factor 𝑝 = 1). 
 
One finds that this approach underestimates the experimentally found values for the activation rate 𝑘*. 
In fact, the reactive hard spheres model neglects that the reactant molecule A already possesses a certain 
amount of internal energy that is stored in its vibrational degrees of freedom, which should lead to a 
higher activation rate 𝑘*. The higher the number of vibrational degrees of freedom, the more energy the 
molecule stores at thermal equilibrium, and the higher 𝑘* should be. Based on this insight, Hinshelwood 
in 1926 derived the following expression for 𝑘*, which improves the agreement with the experiment: 
 

𝑘* =
𝑘$*

(𝑠 − 1)! }
𝐸+
𝑘q𝑇

~
s$*

𝑒$
3!
/B5 

 
Here, 𝑠 is the number of vibrational degrees of freedom of the molecule. We can see that for activation 
energies 𝐸+ that are typically much higher than the thermal energy 𝑘q𝑇, the activation rate 𝑘* increases 
with the number of oscillators 𝑠. (Note that for large 𝑠 ≳ 3!

/B5
, we actually find that the Hinshelwood 

expression predicts a decreasing rate. However, as we will see below, this is because the derivation 
makes the approximation that 𝑠 ≪ 3!

/B5
 in order to obtain a simple expression for 𝑘*. Without this 

approximation, the rate is predicted to keep increasing with the number of oscillators 𝑠.) 
 
In Hinshelwood’s derivation, the ratio /$

/9$
  is interpreted as the fraction of molecules exceeding the 

activation energy 𝐸+ in the case of thermal equilibrium. As we have seen above, this is a good 
approximation at high pressure ([M] → ∞) where the energized molecules are in a pre-equilibrium with 
the ground-state molecules ( /$

/9$
= [A∗]

[A]
). It is a more drastic approximation at low pressure, where 

energized molecules are formed in a single collision event that leads to a reaction before another 
collision can occur. We therefore have to make the strong collision assumption (as above for 
deenergizing collisions), i.e., that individual collisions are strong enough to create a thermal population 
of activated molecules, as opposed to a ladder-climbing process involving multiple collisions to 
populate the highest energy levels. 
 
In the following, we derive the expression for the probability 𝑃(𝐸)𝑑𝐸 that in thermal equilibrium, a 
molecule has an energy between 𝐸 and 𝐸 + 𝑑𝐸. With the approximation made above, we can relate this 
probability to the differential energizing rate 𝑑𝑘* for populating molecular energy levels between 𝐸 and 
𝐸 + 𝑑𝐸 
 

𝑃(𝐸)𝑑𝐸 =
𝑑𝑘*
𝑘$*

=
1

(𝑠 − 1)! }
𝐸
𝑘q𝑇

~
s$*

𝑒$
3
/B5 }

𝑑𝐸
𝑘q𝑇

~ 

 
In thermal equilibrium, the probability 𝑃(𝐸)𝑑𝐸 corresponds to a Boltzmann distribution for the 
vibrational degrees of freedom of the molecule, which we will describe as 3𝑁 − 6 (3𝑁 − 5) classical 
harmonic oscillators. In your quantum chemistry class, you have learnt that the energy levels of the 
harmonic oscillator are 𝐸 = e𝑣 + *

!
f ℎ𝜈), where 𝜈) is the eigenfrequency of the oscillator. The sum of 
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states 𝐺(𝐸) of such an oscillator (i.e., the number of levels with energies smaller than or equal to 𝐸) is 
approximately 
 

𝐺(𝐸) =
𝐸
ℎ𝜈)

 

 
In fact, this equation is exact, if we assume the oscillator to be classical, not quantum. The density of 
states 𝑁(𝐸) = 2�(3)

23
 (i.e., the number of levels per unit energy) is then simply 

 

𝑁(𝐸) =
1
ℎ𝜈)

 

 
The probability for such an oscillator to have an energy between 𝐸 and 𝐸 + 𝑑𝐸 is given by the following 
Boltzmann expression: 
 

𝑃(𝐸)𝑑𝐸 =
𝑁(𝐸)𝑒$

3
/B5𝑑𝐸

∫ 𝑁(𝐸)𝑒$
3
/B5𝑑𝐸K

+

= 𝑒$
3
/B5𝑑𝐸 

 
For 𝑠 oscillators of energies 𝐸) with ∑ 𝐸)s

).* = 𝐸, the sum of states becomes 
 

𝐺(𝐸) = P
𝑑𝐸*
ℎ𝜈*

3

+

P
𝑑𝐸!
ℎ𝜈!

3$3$

+

… P
𝑑𝐸s
ℎ𝜈s

3$3$$	…$3R9$

+

=
1

∏ ℎ𝜈)s
).*

P𝑑𝐸*

3

+

P 𝑑𝐸!

3$3$

+

… P 𝑑𝐸s

3$3$$	…$3R9$

+

 

 
Let’s rewrite the integral bounds 
 

P𝑑𝐸*

3

+

P 𝑑𝐸!

3$3$

+

… P 𝑑𝐸s

3$3$$	…$3R9$

+

= P 𝑑𝐸*

F$

+

P 𝑑𝐸!

F%

+

…P 𝑑𝐸s

FR

+

 

 
with 𝐻* = 𝐸 and 𝐻( = 𝐻($* − 𝐸($*. 
 

P 𝑑𝐸*

F$

+

… P 𝑑𝐸s$!

FR9%

+

P 𝑑𝐸s$*

FR9$

+

P 𝑑𝐸s

FR

+

= P 𝑑𝐸*

F$

+

… P 𝑑𝐸s$!

FR9%

+

P 𝑑𝐸s$*

FR9$

+

𝐻s

= P 𝑑𝐸*

F$

+

… P 𝑑𝐸s$!

FR9%

+

P 𝑑𝐸s$*

FR9$

+

(𝐻s$* − 𝐸s$*)

= P 𝑑𝐸*

F$

+

… P 𝑑𝐸s$!

FR9%

+

P 𝑑(𝐸s$* −𝐻s$*)
+

$FR9$

− (𝐸s$* −𝐻s$*)

= P 𝑑𝐸*

F$

+

… P 𝑑𝐸s$!

FR9%

+

1
2
𝐻s$*! = P 𝑑𝐸*

F$

+

P 𝑑𝐸!

F%

+

… P 𝑑𝐸s$!

FR9%

+

1
2
(𝐻s$! − 𝐸s$!)!

= P 𝑑𝐸*

F$

+

…
1
3!
𝐻s$!N = ⋯ =

1
𝑠!
𝐸s 

 
We thus obtain 
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𝐺(𝐸) =
𝐸s

𝑠!∏ ℎ𝜈)s
).*

 

 
and 
 

𝑁(𝐸) =
𝐸s$*

(𝑠 − 1)!∏ ℎ𝜈)s
).*

 

 
as well as9 
 

𝑃(𝐸)𝑑𝐸 =
𝑁(𝐸)𝑒$

3
/B5𝑑𝐸

∫ 𝑁(𝐸)𝑒$
3
/B5𝑑𝐸K

+

=
𝐸s$*𝑒$

3
/B5𝑑𝐸

∫ 𝐸s$*𝑒$
3
/B5𝑑𝐸K

+

=
1

(𝑠 − 1)! }
𝐸
𝑘q𝑇

~
s$*

𝑒$
3
/B5 }

𝑑𝐸
𝑘q𝑇

~ 

 
 
 

 
 
 
In order to obtain 𝑘*, we calculate the fraction of molecules with energy exceeding the activation energy 
𝐸+ through integration 
 

𝑘*
𝑘$*

= P 𝑃(𝐸)𝑑𝐸
K

3!

= P
1

(𝑠 − 1)! }
𝐸
𝑘q𝑇

~
s$*

𝑒$
3
/B5 }

𝑑𝐸
𝑘q𝑇

~
K

3!

	

		

	
=

𝑥 =
𝐸
𝑘q𝑇

					
1

(𝑠 − 1)!
P (𝑥)s$*𝑒$0𝑑𝑥
K

0!.
3!
/B5

						
	
=

𝑦 = 𝑥 − 𝑥+
							

𝑒$0!
(𝑠 − 1)!

P(𝑦 + 𝑥+)s$*𝑒$m𝑑𝑦
K

+

	

 
We carry out a binomial expansion for the term (𝑦 + 𝑥+)s$* to find 
 

𝑘*
𝑘$*

=
𝑒$0!

(𝑠 − 1)!
M}

𝑠 − 1
𝑗 ~ 𝑥+

s$*$UP 𝑦U𝑒$m𝑑𝑦
K

+

s$*

U.+

 

 
We can evaluate this expression knowing that ∫ 𝑦U𝑒$m𝑑𝑦K

+ = Γ(𝑗 + 1) = 𝑗! 
 

 
9 ∫ 𝑥s$*𝑒$0𝑑𝑥K

+ = Γ(𝑠) = (𝑠 − 1)! 
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We can further simplify the expression if we assume that 𝑥+ =
3!
/B5

≫ 𝑠 − 1, i.e., the activation energy 
𝐸+ is large compared to the thermal energy 𝑘q𝑇 multiplied by the number of oscillators 𝑠. This will be 
true for small molecules with typical activation energies. In this case, only the first term of the binomial 
expansion with 𝑗 = 0 will be important, so that we obtain the expression stated initially above: 
 

𝑘*
𝑘$*

=
𝑒$0!

(𝑠 − 1)!
𝑥+s$* =

1
(𝑠 − 1)! }

𝐸+
𝑘q𝑇

~
s$*

𝑒$
3!
/B5 

 
 
6.2 RICE-RAMSPERGER-KASSEL (RRK) THEORY 
 
The RRK theory is a statistical theory that allows us to calculate the reaction rate constant 𝑘!. It is 
obvious that this reaction rate constant should increase with the energy 𝐸 of the activated molecule and 
thus be a function of the energy, 𝑘! = 𝑘(𝐸). Moreover, we expect that the rate constant should decrease 
when we increase the number of oscillators 𝑠 because for a given energy 𝐸, the are more ways to 
distribute the energy between a larger number of oscillators. The probability for a sufficiently large 
amount of energy to be contained in the mode that leads to the reaction is thus lower. 
 
We generalize the Lindemann-Hinshelwood mechanism to take into account that the activation and 
reaction rate constants both depend on the energy of the activated molecule. For an activated molecule 
A with an energy between 𝐸 and 𝐸 + 𝑑𝐸, we obtain 
 

A +M
𝑑𝑘*
	→	
	
A∗(𝐸, 𝐸 + 𝑑𝐸) + M 

A∗(𝐸, 𝐸 + 𝑑𝐸) + M
𝑘$*
	→	
	
A + M 

A∗(𝐸, 𝐸 + 𝑑𝐸)
𝑘(𝐸)
	→	
	
products 

 
We obtain a differential unimolecular rate constant 
 

𝑑𝑘o() =
𝑘(𝐸) 𝑑𝑘*𝑘$*
1 + 𝑘(𝐸)

𝑘$*[M]

 

 
As discussed above, we assume that 2/$

/9$
= 𝑃(𝐸)𝑑𝐸. Moreover, we note that 𝑘$*[M] is the collision 

frequency 𝜔 of the reactant molecule. 
 

𝑑𝑘o() = 𝜔
𝑘(𝐸)𝑃(𝐸)𝑑𝐸
𝑘(𝐸) + 𝜔

 

 
Upon integration, this gives the thermal unimolecular rate constant 
 

𝑘o() = 𝜔 P
𝑘(𝐸)𝑃(𝐸)𝑑𝐸
𝑘(𝐸) + 𝜔

K

3!

 

 
The RRK theory assumes that the activated molecules of a specific energy 𝐸 ≥ 𝐸+ form a 
microcanonical ensemble, i.e. all possible states of this energy are populated with equal probability. 
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Molecules with an energy of 𝐸+ + 𝐸′ in the critical mode will dissociate (or isomerize) within one 
vibrational period of duration 1/𝜈, with	𝜈 the frequency of the critical oscillator. In other words, this 
fraction of molecules dissociates with a rate corresponding to 𝜈. 
Moreover, the theory assumes that even after some molecules have dissociated, the remaining 
molecules continue to form a microcanonical ensemble. This will only be the case if (1) the energy 
freely redistributes between all vibrational degrees of freedom (ergodic hypothesis) and (2) if this so-
called intramolecular vibrational energy redistribution (IVR) occurs on a timescale much faster than the 
timescale of the reaction. 
 
To derive the RRK rate constant 𝑘(𝐸), we first calculate the probability for a molecule to have an 
energy of 𝐸s ≥ 𝐸+ in the critical mode by using the expressions derived above for density of states of a 
set of 𝑠 classical oscillators. 
 
The density of states 𝑁(𝐸, 𝐸s ≥ 𝐸+)	that have an energy of 𝐸s = 𝐸+ + 𝐸′ in the critical mode is the 
density of states of 𝑠 − 1 oscillators at a total energy of 𝐸 − 𝐸+ − 𝐸′ multiplied by the density of states 
of the critical oscillator at energy 𝐸s = 𝐸+ + 𝐸′ and integrated over all energies 𝐸′ 
 

𝑁(𝐸, 𝐸s ≥ 𝐸+) = P
(𝐸 − 𝐸+ − 𝐸′)s$!

(𝑠 − 2)!∏ ℎ𝜈)s$*
).*

⋅
1
ℎ𝜈s

𝑑𝐸′

3$3!

+

=
(𝐸 − 𝐸+)s$*

(𝑠 − 1)!∏ ℎ𝜈)s
).*

 

 
We divide this expression by the total density of states of 𝑠 oscillators of total energy 𝐸 
 

𝑁(𝐸) =
𝐸s$*

(𝑠 − 1)!∏ ℎ𝜈)s
).*

 

 
to obtain the fraction of molecules that have an energy of 𝐸s ≥ 𝐸+ in the critical mode 
 

𝑁(𝐸, 𝐸s ≥ 𝐸+)
𝑁(𝐸)

= }
𝐸 − 𝐸+
𝐸 ~

s$*
 

 
We obtain the classical RRK rate constant 𝑘(𝐸) by simply multiplying with the dissociation rate 𝜈. 
 

𝑘(𝐸) = 𝜈 }
𝐸 − 𝐸+
𝐸 ~

s$*
 

 
 

 
We are now able to calculate the unimolecular rate constant 𝑘o() using just the variables 𝑠, 𝜈, and 𝐸+. 
The RRK treatment gives a reasonable agreement with experiments. Shortcomings arise from the 
classical treatment of the vibrations of the molecule. Moreover, the Arrhenius prefactor 𝜈, which in the 
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RRK model corresponds to a vibrational frequency (1013 – 1014 s-1) underestimates experimental values, 
which are usually larger than 1014 s-1. Such discrepancies are overcome by the RRKM theory, which is 
a microcanonical transition state theory. 
 
 
 
7 BASIC CONCEPTS OF STATISTICAL THERMODYNAMICS 
 
This chapter provides a brief overview of some basic concepts of statistical thermodynamics that we 
will subsequently apply in the derivation of Transition State Theory. Statistical thermodynamics is 
based on the insight that macroscopic thermodynamic quantities ultimately arise from the properties of 
individual molecules, which are described by quantum mechanics. Knowing the properties of 
molecules, we can use statistical thermodynamics to derive macroscopic thermodynamic quantities. 
Since thermodynamics deals with large ensembles of molecules, we can understand these quantities to 
be averages of molecular parameters. 
 
 

 
 
 
As an example, let us consider a container filled with a monoatomic gas. We can use macroscopic 
parameters, such as the temperature T, to describe the macrostate of this large ensemble of gas 
molecules. At the same time, many different microstates exist that each correspond to this temperature. 
To see this, consider that each gas molecule has 3 parameters that describe its position as well as three 
that describe its momentum, giving a total of 6N parameters {xi, pi} for all N gas molecules. As the gas 
molecules are in motion, these parameters will assume different values at different points in time. 
Nevertheless, these different microstates that the gas can assume all have the same temperature. 
 
 

 
 
 
Statistical thermodynamics makes two assumptions about these microstates. 
 

(Quantum) Mechanics
microscopic

~10 molecules, atoms, ...

microscopic molecular parameters

energy of the molecule E,
momentum p, quantum state, ...

~NA particles

macroscopic

macroscopic thermodynamic quantities

Phenomenological Thermodynamics

temperature T, entropy S,
heat capacity cp, ...

Statistical
Thermodynamics

...
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Postulate 1. The ergodic hypothesis states that over a sufficiently long period of time, a given system 
will assume all possible microstates. In other words, if we start the system in one microstate, the system 
will explore all other microstates that are possible for the given starting parameters. A consequence of 
this postulate is that the time average of some observable M is equal to the ensemble average. 
 

〈𝑀〉-→K = 〈𝑀〉(→K 
 
 
Postulate 2. According to the principle of equal a priori probabilities, all microstates have the same 
probability. Taken together with Postulate 1, this means that the system will spend equal amounts of 
time in each microstate. 
 
 
Under these assumptions, we can determine which macrostate the system will assume under given 
conditions simply by determining the statistical weight W of this macrostate, i.e. the number of 
microstates that correspond to that macrostate. The macrostate with the highest number of microstates 
will be the most probable. For a large number of molecules, this is the only macrostate we need to 
consider, as it will be vastly more probable than any other state. This is a consequence of the law of 
large numbers. 
 
As an example, to illustrate this point, consider rolling N dices, where every dice represents a particle 
or molecule. We are interested in a macroscopic property of the system, say the average number 〈𝐴〉 
shown by the dices. The probability of different outcomes is shown below. 
 

 
 
 
For 𝑁 = 2 dices, we see that the macrostate with 〈𝐴〉 = 3.5 is the most probable, with six different 
microstates {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} corresponding to this outcome. For 𝑁 = 10, the 
probability distribution becomes more peaked, and for 𝑁 = 10000, the macrostate 〈𝐴〉 = 3.5 is 
considerably more likely than other macrostates. For 𝑁 → ∞, we obtain a delta function. By analogy, 
we can conclude that in order to describe the average properties of a large ensemble of molecules, we 
only need to consider the most probable macrostate. 
 
 
7.1 DERIVATION OF THE BOLTZMANN DISTRIBUTION 
 
An important macroscopic property of an ensemble is the distribution of energy within it. Assume that 
the 𝑁 molecules of the ensemble are distributed of the energy levels {𝐸)} and that 𝑁) molecules have 
the energy 𝐸), with 
 

𝑁 =M𝑁)
)

 

 
and 
 

2 4 6
Average value

0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

2 4 6
Average value

0

0.05

0.1

0.15

0.2

2 4 6
Average value

0

0.02

0.04

0.06

0.08

2 4 6
Average value

0

0.5

1

1.5

2

2.5 10-3

N = 1 N = 2 N = 10 N = 10000



Kinetics & Dynamics 72 

𝐸 =M𝐸)
)

𝑁) 

 
where the energy 𝐸 is the total energy of the ensemble. If we are studying a microcanonical ensemble, 
this energy is a fixed quantity, since in a microcanonical ensemble, the particle number 𝑁, the volume 
𝑉, and the total energy of the ensemble 𝐸 are given. In a canonical ensemble, the particle number 𝑁, 
the volume 𝑉, and the temperature 𝑇 are given. Here, the total energy is a function of the temperature, 
𝐸(𝑇). 
 
For the statistical weight 𝑊 of a given macrostate, we find 
 

𝑊 =
𝑁!

∏ 𝑁)!)
 

 
We obtain this result if we consider that there are 𝑁! ways of sorting the 𝑁 particles into the different 
energy levels of a given macrostate. However, it does not matter how the 𝑁) molecules of a given energy 
𝐸) are sorted. Since there are 𝑁)! ways of sorting these molecules, we divide by 𝑁)! for every energy 
level 𝐸). 
 
We seek to find the macrostate with the highest statistical weight 𝑊. In other words, we want to find 
the maximum of 𝑊, where the following condition must hold 
 

𝑑 ln𝑊 =M
𝜕 ln𝑊
𝜕𝑁)

𝑑𝑁)
)

= 0 

 
Here, we choose to find the maximum of ln𝑊, which is equivalent to finding the maximum of 𝑊, but 
facilitates the math in the following. 
 
We have to keep in mind that we have to find this maximum under two constraints, namely that the 
number of particles is fixed (𝑁 = ∑ 𝑁)) ) as well as the total energy (𝐸 = ∑ 𝐸)) ). In order to satisfy these 
constraints, we choose the method of Lagrange multipliers to find the maximum. We first write these 
to constraints in differential form 
 
 

 𝑑𝑁 =M𝑑𝑁)
)

= 0 | ⋅ 𝛼 

 

 𝑑𝐸 =M𝐸) 	𝑑𝑁)
)

= 0 | ⋅ 𝛽 

 
 
and then multiply them with the Lagrange multipliers 𝛼 and 𝛽, respectively. Finally, we add all three 
equations to obtain 
 

M
𝜕 ln𝑊
𝜕𝑁)

𝑑𝑁)
)

−M𝛼	𝑑𝑁)
)

−M𝛽	𝐸𝑖	𝑑𝑁)
)

= 0 

 
 
After rearrangement, we obtain 
 

M}
𝜕 ln𝑊
𝜕𝑁)

− 𝛼 − 𝛽	𝐸𝑖~ 𝑑𝑁)
)

= 0 
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This equation can only hold if 
 

 
𝜕 ln𝑊
𝜕𝑁)

− 𝛼 − 𝛽	𝐸) = 0 

 

for all 𝑖. 
 

 
We use Stirling’s approximation10 to simplify the expression for ln𝑊 
 

 ln 𝑥! = 𝑥 ln 𝑥 − 𝑥 
 

for all 𝑥 ≫ 1 
 

 
so that 
 

ln𝑊 = ln𝑁! −M𝑁)!
)

≈ 𝑁 ln𝑁 − 𝑁 − �M𝑁) ln𝑁)
)

−M𝑁)
)

� 

 
With ∑ 𝑁)) = 𝑁, we obtain 
 

ln𝑊 = 𝑁 ln𝑁 −M𝑁) ln𝑁)
)

 

 
so that 
 

𝜕 ln𝑊
𝜕𝑁)

=
𝜕(𝑁 ln𝑁)
𝜕𝑁)

−
𝜕
𝜕𝑁)

(𝑁) ln𝑁)) = − ln𝑁) − 1 ≈ − ln𝑁) 

 
Finally, we obtain 
 

ln𝑁) = −𝛼 − 𝛽	𝐸𝑖 
 
or 
 

𝑁) = 𝑒$�𝑒$�3" 
 
Using the method of Lagrange multipliers, we have thus obtained an expression for the most probable 
number of molecules 𝑁) that occupy energy level 𝐸𝑖. We still have not determined the multipliers 𝛼 
and 𝛽, which we will do in the following. We can eliminate 𝛼 by calculating the population fraction in 
a given level 𝑖 
 

𝑁)
𝑁
=

𝑒$�3"
∑ 𝑒$�3")

=
𝑒$�3"
𝑄

 

 
Here, we have defined the partition function 𝑄 with 
 

𝑄 =M𝑒$�3"
)

 

 

 
10 ln 𝑥! = ln 1 + ln 2 +⋯ ≈ ∫ ln 𝑥 𝑑𝑥0

+ = 𝑥 ln 𝑥|+0 − 𝑥|+0 = 𝑥 ln 𝑥 − 𝑥, where we have used partial 
integration in the last step. 
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We are left to determine 𝛽. We can for example do this by comparing with an expression that we have 
obtained in the context of the kinetic theory of gases (section 4.1). There, we found that the ideal gas 
law can be related to the average square of one velocity component of the gas molecules 
 

𝑝𝑉 = 𝑘q𝑁𝑇 = 𝑁𝑚〈𝑢0!〉 
 
 
We can now determine the average square of one velocity component 〈𝑢0!〉 using the distribution 
function we just obtained 
 

〈𝑢0!〉 =
∫ 𝑢0!𝑒

$�*!'o>
%
𝑑𝑢0

K
$K

∫ 𝑒$�
*
!'o>

%
𝑑𝑢0

K
$K

=
1
𝛽𝑚

 

 
so that we find 𝛽 = 1/	𝑘q𝑇 and  
 

𝑁)
𝑁
=
𝑒$

3"
/B5

𝑄
 

 
 
We have thus obtained the familiar Boltzmann distribution. 
 
In the case of energy levels with degeneracy 𝑔), we can easily see that the distribution becomes 
 

𝑁)
𝑁
=
𝑔) 	𝑒

$ 3"
/B5

𝑄
 

 
with 
 

𝑄 =M𝑔) 	𝑒
$ 3"
/B5

)

 

 
 
 
7.2 PARTITION FUNCTIONS 
 
We have seen that in the derivation of the Boltzmann distribution, the partition function 𝑄 naturally 
occurred. In order to develop a better understand of the meaning of the partition function, let us write it 
out with all energies referenced to the lowest energy level of the system, which we set to have zero 
energy 𝐸+ = 0. In this case, 
 

𝑄 =M𝑔) 	𝑒
$ 3"
/B5

)

= 𝑔+ + 𝑔*𝑒
$ 3$
/B5 +⋯ 

 
We can see that at 𝑇 = 0	K, only the ground state is populated	𝑄 = 𝑔+. In other words, the system has 
access to only 𝑔+ energy levels. At higher temperatures, higher energy states can be partially populated 
and 𝑄 > 𝑔+. The exponential terms lead to values smaller than one and therefore to partial populations 
of the upper energy levels. Knowing that 𝑘q𝑇 corresponds to the thermal energy a system has available, 
we can interpret the partition function to be a measure of the number of states that are accessible to a 
system at a given temperature.  
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Importantly, will see in the following that the partition function of a system allows us to derive all 
thermodynamic quantities. Moreover, it is a crucial component to understanding Transition State 
Theory. 
 
Let us consider the partition function of one molecule. As you have learnt in your Quantum Chemistry 
class, the energy of a molecule is a sum of translational, rotational, vibrational, and electronic energy. 
 

𝜖 = 𝜖-r%(s + 𝜖rx- + 𝜖g)� + 𝜖�y�I 
 
At low enough temperatures, we can usually neglect the electronic part as only the electronic ground 
state is populated. In this case, we can write down the molecular partition function 𝑞 as follows. 
 

𝑞 =M𝑔) 	𝑒
$ �"
/B5

)

=M𝑔-r%(s,)𝑔rx-,U𝑔g)�,/ 	𝑒
$
�#SIQR,"R�ST#,AR�U"V,D

/B5

)U/

= 𝑞-r%(s𝑞rx-𝑞g)� 

 
We see that the molecular partition function is a product of a translational, a rotational, and a vibrational 
partition function. 
 
With knowledge of the energy levels of the particle of the box, the rigid rotor, and the harmonic 
oscillator, we can derive approximate expression for the translational, rotational, and vibrational 
partition functions, as shown in Appendix B. 
 
We can also derive the partition function of an ensemble of 𝑁 molecules that we will here assume to be 
non-interacting, i.e. the energy levels of a molecule that is part of the ensemble are identical to those of 
an isolated molecule. A given energy 𝐸U that the ensemble can assume is the sum of the energies 𝜖U) of 
all the molecules of the ensemble 
 

𝐸U =M𝜖U)

)

 

 
For the partition function of the ensemble, we obtain 
 

𝑄 =M𝑔U 	𝑒
$
3A
/B5

U

=MK𝑔U)𝑒
$
�A
"

/B5

)

	
U

=KM𝑔U)𝑒
$
�A
"

/B5

U)

=K 𝑞
)

= 𝑞p 

 
We see that the partition function of an ensemble of 𝑁 non-interacting molecules is equal to the partition 
function of one molecule to the power of 𝑁. 
 
In a crystal, where each molecule has a fixed position, one can distinguish the individual molecules. 
This is not the case in a gas. For 𝑁 indistiguishable molecules, we obtain instead 
 

𝑄 =
𝑞p

𝑁!
 

 
where we take into account that for each energy of the ensemble, there are 𝑁! combinations that lead to 
this energy, which we cannot distinguish. 
 
 
7.3 THERMODYNAMIC FUNCTIONS 
 
If we know the partition function of an ensemble, we can derive all thermodynamic functions from it. 
In the following, we will go through the most important. 
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Internal energy 𝑼: 
 

𝑈 = 𝑁 ⋅ 〈𝜖〉 = 𝑁 ⋅
∑ 𝜖)𝑔) 	𝑒

$ �"
/B5)

∑ 𝑔) 	𝑒
$ �"
/B5)

= 𝑁 ⋅
𝑘q𝑇!

𝜕𝑞
𝜕𝑇

𝑞
= 𝑁𝑘q𝑇!

𝜕 ln 𝑞
𝜕𝑇

= 𝑘q𝑇!
𝜕 ln𝑄
𝜕𝑇

 

 
 
Heat capacity 𝒄𝒗: 
 

𝑐g = }
𝜕𝑈
𝜕𝑇~g

=
𝜕
𝜕𝑇 }

𝑘q𝑇!
𝜕 ln𝑄
𝜕𝑇 ~ = 2𝑘q𝑇

𝜕 ln𝑄
𝜕𝑇

+ 𝑘q𝑇!
𝜕! ln 𝑄
𝜕𝑇!

 

 
 
Entropy 𝑺: 
 

𝑑𝑆 =
𝑑𝑄∗

𝑇
=
𝑐g𝑑𝑇
𝑇

 
 
where 𝑄∗ refers to heat, not the partition function. 
 

𝑆 = P𝑑𝑆
�

+

= P𝑑𝑇	2𝑘q
𝜕 ln𝑄
𝜕𝑇

+ 𝑘q𝑇
𝜕! ln 𝑄
𝜕𝑇!

5

+

= 2𝑘q ln 𝑄 + 𝑘q𝑇
𝜕 ln𝑄
𝜕𝑇

− 𝑘q ln 𝑄	

= 𝑘q𝑇
𝜕 ln𝑄
𝜕𝑇

+ 𝑘q ln 𝑄 =
𝑈
𝑇
+ 𝑘q ln 𝑄 

 
 
Helmholtz free energy 𝑨: 
 

𝐴 = 𝑈 − 𝑇𝑆 = −𝑘q𝑇 ln𝑄 
 
 
Pressure 𝒑: 
 

𝑑𝐴 = 𝑑𝑈 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇 = −𝑆𝑑𝑇 − 𝑝𝑑𝑉 
 
where we have used 
 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉 
 
It follows that 
 

𝑝 = −
𝜕𝐴
𝜕𝑉

= 𝑘q𝑇
𝜕 ln𝑄
𝜕𝑉

 
 
Enthalpy 𝑯: 
 

𝐻 = 𝑈 + 𝑝𝑉 = 𝑘q𝑇!
𝜕 ln𝑄
𝜕𝑇

+ 𝑘q𝑇
𝜕 ln𝑄
𝜕𝑉

𝑉 = 𝑘q𝑇 ó
𝜕 ln𝑄
𝜕 ln 𝑇

+
𝜕 ln𝑄
𝜕 ln𝑉

ô 
 
Gibbs free energy 𝑮: 
 

𝐺 = 𝐴 + 𝑝𝑉 = −𝑘q𝑇 ln𝑄 + 𝑘q𝑇
𝜕 ln𝑄
𝜕 ln𝑉
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7.4 EQUILIBRIUM CONSTANTS OF GAS PHASE REACTIONS 
 
Here, we will express the equilibrium constant for a gas phase reaction in terms of partition functions. 
In equilibrium, 
 

M𝜈)𝜇)
)

= 0 

 
where 𝜈) is the stoichiometric coefficient of compound 𝑖 (negative for reactants and positive for 
products), and 𝜇) is the chemical potential 
 

𝜇) = }
𝜕𝐺)
𝜕𝑛)

~
7,5,(A�("

= }
𝜕𝐴)
𝜕𝑛)

~
�,5,(A�("

 

 
The Helmholtz free energy 𝐴) of an ideal gas with 𝑁) non-distinguishable particles is 
 

𝐴) = −𝑘q𝑇 ln𝑄) = −𝑘q𝑇 ln
𝑞)
p"

𝑁)!
= −𝑘q𝑇𝑁) ln 𝑞) + 𝑘q𝑇𝑁) ln𝑁) − 𝑘q𝑇𝑁) 	

= −𝑛)𝑅𝑇 ln
𝑞)
𝑛)𝑁�

− 𝑅𝑛)𝑇 

 
where 𝑁� is Avogadro’s constant. Consequently, 
 

𝜇) = }
𝜕𝐴)
𝜕𝑛)

~
�,5,(A�("

= −𝑅𝑇 ln
𝑞)
𝑁)

 

 
Finally, we have to introduce one more modification to the partition functions. When we write 
 

𝑞) =M𝑔U 	𝑒
$
�"A
/B5

U

 

 
the energies 𝜖)U are referenced to the ground state energy of the molecule 𝑖. However, in an expression 
dealing with several different reactants and products, we have to introduce a common energy scale. We 
do this by referencing all molecules to the energy, at which reactants and products are entirely 
dissociated into atoms, with the corresponding atomization energy of species 𝑖 denoted by 𝜖)2. It is this 
atomization energy that we substract from the molecular energies, so that we obtain the modified 
partition function 𝑞)2 
 

𝑞)2 =M𝑔U 	𝑒
$
�"A$�"W
/B5

U

= 𝑒
�"W
/B5𝑞) 

 
Finally, we can write 
 

M𝜈)𝜇)
)

=M−𝑅𝑇 ln
𝑞)
z"𝑒

z"�"W
/B5

𝑁)
z"

)

= −𝑅𝑇 lnK
𝑞)
z"𝑒

z"�"W
/B5

𝑁)
z"

)

= 0 

 
Rearrangement gives the equilibrium constant 𝐾p 
 

𝐾p =K𝑁)
z"

)

=K𝑞)
z"

)

⋅ 𝑒$
E !
45  
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where 
Δ𝑈+ = 𝑁�M𝜈)𝜖)2

)

 

is the reaction energy at 0 K. Note that the equilibrium constant 𝐾p is defined in terms of numbers 𝑁) 
of the different species. In order to obtain the more familiar equilibrium constant 𝐾I that is defined in 
terms of molar concentrations 𝑐), we have to divide each number 𝑁) by Avogadro’s contant 𝑁� as well 
as the reaction volume 𝑉. 
 

𝐾I =K𝑐)
z"

)

=K}
𝑁)
𝑁�𝑉

~
z"

)

=K}
𝑞)
𝑁�𝑉

~
z"

)

⋅ 𝑒$
E !
45 = (𝑁�𝑉)$∑ z"" K𝑞)

z"

)

⋅ 𝑒$
E !
45  

 
 
 
 
 
 
 
 
8 TRANSITION STATE THEORY 
 
Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics Ch. 10. (Prentice Hall, 
1989). 
 
Transition State Theory predicts the rate constants of reactions based on the statistical properties of the 
system. The basic assumption of the theory is that the transition state of the reaction is in thermal 
equilibrium with the reactants, so that statistical thermodynamics can be used to derive a simple 
expression for the thermal rate constant. Since Transition State Theory is based on a statistical picture, 
it neglects any microscopic details of the reaction and will fail if those are important. This may for 
example be the case if under the experimental conditions, the reactants do not form a statistical 
ensemble. In this case, only detailed (quantum) dynamics simulations would be able to provide an 
accurate picture. 
 
8.1 MOTION ON THE POTENTIAL ENERGY 

SURFACE 
 
As you have learnt in your Quantum Chemistry 
course, the Born-Oppenheimer approximation 
allows us to separate the electronic and nuclear 
motion. The nuclei can then be thought of as 
moving within a potential that is created by the 
electron cloud, which instantaneously rearranges 
when the nuclear positions change. An example 
of a calculated potential energy surface is shown 
below for the reaction of H2 with an F atom. This 
system has 3𝑁 − 6 = 3 vibrational degrees of 
freedom. However, in order to be able to display 
the surface, we restrict the nuclei to a linear 
collision geometry. This leaves only two 
coordinates, the hydrogen-hydrogen distance 
(𝑟¢¢) and the hydrogen-fluorine distances (𝑟¢£). 
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The contour plot below illustrates the salient features of a potential energy surface, here that of the 
reaction of H2 with an H atom, also in linear geometry. Since this is a degenerate reaction, the surface 
is symmetric with respect to the diagonal. The two hydrogen-hydrogen distances are labeled 𝑟* and 𝑟!. 

 

 
 

 
The dashed line marks the minimum energy path leading from the configuration H2 … H to the 
configuration H … H2. Products and reactants are separated by the transition state, a saddle point of the 
potential energy surface that lies on the minimum energy path. For the H2 … H system, the transition 
state is symmetric with 𝑟* = 𝑟! = 𝑟+. If we perform a normal mode analysis at the saddle point, we find 
that one of the normal modes 𝑠 corresponds to motion along the minimum energy path 
 

𝑠 = 𝑟* − 𝑟! 
 
and the other normal mode 𝜉 to motion orthogonal to the minimum energy path 
 

𝜉 = 𝑟* + 𝑟! 
 
The potential 𝑈 as a function of 𝑠 and 𝜉 is shown below.  

 

 
 

We can see that at the transition state, the minimum energy path has a maximum, while the orthogonal 
coordinate shows a minimum. In general, the transition state is a saddle point, which is a maximum 
along the reaction coordinate (the minimum energy path), and a minimum along all other normal modes. 
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A normal mode analysis at the transition state therefore reveals one imaginary frequency, which belongs 
to the normal mode that describes motion along the minimum energy path. To see this, remember that 

for a harmonic oscillator, the angular frequency is 𝜔 = É/�, with 𝑘 = 2% 
20%

, where 𝜇 is the reduced mass 

and 𝑥 the coordinate of the oscillator. All other 3𝑁 − 7 frequencies are real and correspond to vibrations 
of the other normal modes. 
 
 
8.2 POSTULATES AND DERIVATION 
 
Transition State Theory (Eyring, Evans, and Polanyi) makes two basic assumptions, namely that 
electronic and nuclear motion can be separated as discussed above (Born-Oppenheimer approximation) 
and that the reactant molecules are distributed among their energy states according to the Boltzmann 
distribution. 
 
The theory uses a simple physical picture of an elementary reaction, say between reactants A and B, 
which proceed through a transition state X‡ to form products 
 

A + B → X‡ → products 
 
Transition State Theory makes the following specific assumptions. 
 
1) No recrossing. Reactants that have crossed the transition state X‡ in the direction of products cannot 
turn around and reform reactants. Similarly, if reactants and products are in equilibrium, then the 
products that have crossed the transition state in the direction of the reactants, cannot turn around to 
reform products. 
 
The sketch below depicts the potential energy as a function of the reaction coordinate 𝑠 or the minimum 
energy path. We define a small region on top of the barrier between two parallel dividing surfaces that 
are orthogonal to the reaction path and that are located at 𝑠 = − ¥

!
 and 𝑠 = ¥

!
. Note that these surfaces 

are 3𝑁 − 7 dimensional. We consider all molecules between these two surfaces as transition states. 
Those outside these surfaces are either reactants or products. 
 

 
 
2) Quasi-equilibrium hypothesis. The transition states are distributed among their states according to 
the Boltzmann distribution, even if there is no equilibrium between reactants and products. It can be 
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shown that this second assumption is not strictly necessary, but that only the first assumption is 
fundamental to the theory. 
 
If reactants and products are in equilibrium, we will have both transition states moving forward to give 
products as well as those moving backwards to form reactants. We denote their concentrations as 𝑁�

‡ 
and 𝑁�

‡, respectively. At equilibrium, the number of transitions states moving forward must equal the 
number of transition states moving backwards, 𝑁�

‡ = 𝑁�
‡. Moreover, the total concentration of transition 

states is 𝑁‡ = 𝑁�
‡ +𝑁�

‡ = 2𝑁�
‡. 

 
Under the assumption of quasi-equilibrium 
 

𝑁‡ = 𝐾‡[A][B] 
 
where 𝐾‡ is the equilibrium constant for the formation of the transition state. Moreover, we can 
calculate the concentration of the forward moving transition states 
 

𝑁�
‡ =

𝑁‡

2
=
1
2
𝐾‡[A][B] 

 
We can derive this equilibrium constant 𝐾‡ from statistical thermodynamics (Section 7.4). For a gas-
phase reaction, 
 

𝐾‡ =
𝑄-x-
‡

𝑄�𝑄q
𝑒$

3!
/B5 

 
where the partition functions of the reactants, 𝑄� and 𝑄q, as well as that of the transition state 𝑄-x-

‡  are 
defined as the molecular partition functions 𝑞) divided by Avogadro’s number 𝑁� and the reaction 
volume 𝑉. 
 

𝑄) =
𝑞)
𝑁�𝑉

 

 
The energy 𝐸+, which we defined as the reaction energy at 0 K (Section 7.4), corresponds to the 
difference in zero-point energies between reactants and the transition state, as indicated in the sketch 
above. 
 
Now that we have derived the concentration of the forward moving transition states 𝑁�

‡, we just need 
an expression for the forward reaction rate 𝑘‡. The product of both gives the rate of the reaction 
 

𝑅 = 𝑘‡𝑁�
‡ 

 
which divided by [A][B] gives the rate constant of the reaction 
 

𝑘TST = 𝑘‡
𝑁�
‡

[A][B]
=
1
2
𝑘‡𝐾‡ 

 
In order to calculate the forward reaction rate, Transition State Theory makes one more assumption. 
 
3) Classical motion along the reaction coordinate. At the transition state, motion along the reaction 
coordinate may be separated from the other coordinates and may be treated classically. Note that by 
treating the motion classically, quantum effects are specifically neglected, such as tunneling through 
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the barrier or quantum reflections, which you have encountered in your Quantum Chemistry course. 
This leads to some of the shortcomings of Transition State Theory. 
 
The average time 𝛿𝑡 for a transition state to traverse the dividing surfaces is 
 

𝛿𝑡 =
𝛿
〈𝑣s〉

 

 
where 〈𝑣s〉 is the average velocity in the reaction coordinate 𝑠. Under the assumption of quasi-
equilibrium, we can calculate this average velocity from a Boltzmann distribution. 
 

〈𝑣s〉 =
∫ 𝑣s𝑒

$�RgR
%

!/B5𝑑𝑣s
K
+

∫ 𝑒$
�RgR%
!/B5𝑑𝑣s

K
+

= ¿
2𝑘q𝑇
𝜋𝜇s

 

 
Here, 𝜇s is the reduced mass of the reaction coordinate 𝑠. Note that we integrate from zero to infinity 
because we only consider forward moving transition states. Moreover, note that we have already 
performed this calculation in Section 4.2 in the context of the kinetic theory of gases and that the 
expression obtained corresponds the mean absolute velocity of a one-dimensional ideal gas. We obtain 
 

𝑘‡ =
1
𝛿𝑡
=
〈𝑣s〉
𝛿

=
1
𝛿
¿
2𝑘q𝑇
𝜋𝜇s

 

 
which gives us the rate constant of the reaction 
 

𝑘TST =
1
2
𝑘‡𝐾‡ =

1
2𝛿
¿
2𝑘q𝑇
𝜋𝜇s

𝑄-x-
‡

𝑄�𝑄q
𝑒$

3!
/B5 

 
Since we have assumed that we can separate the translational motion in the reaction coordinate from all 
other degrees of freedom, the total energy must be a sum of the translational energy of the reaction 
coordinate and the vibrational energy contained in all other modes. In this case, the total partition 
function of the transition state 𝑄-x-

‡  can be written as the product of the partition function of the reaction 
coordinate 𝑄s and that of the remaining modes 𝑄‡. 
 

𝑄-x-
‡ = 𝑄s𝑄‡ 

 
In chapter 7, we have encountered several similar cases. For example, the energy of a particle in a three-
dimensional box is the sum of the energies of three separate particles in one-dimensional boxes. 
Therefore, the partition function can be written as the product of the partition functions of three particles 
in one-dimensional boxes. 
 
Here, we can easily see that the partition function of the reaction coordinate 𝑄s must be the translational 
partition function of a particle of mass 𝜇s in a one-dimensional box of length 𝛿 (Appendix B). 
 

𝑄s =
𝛿
ℎ¢

2𝜋𝜇s𝑘q𝑇 
 
After substitution, we obtain the Transition State Theory rate constant 
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𝑘TST =
𝑘q𝑇
ℎ

𝑄‡

𝑄�𝑄q
𝑒$

3!
/B5 

 
Note that both the distance of the dividing surfaces 𝛿 as well as the reduced mass of the reaction 
coordinate 𝜇s have disappeared from the final equation. In order to determine the Transition State 
Theory rate constant 𝑘TST, we need to calculate the partition functions of both the reactants and the 
transition state. In particular, we must have knowledge of the vibrational frequencies and the rotational 
constants (or moments of inertia). For the transition state, such information is usually hard to obtain 
and is therefore frequently taken from quantum chemical calculations. 
 
In the expression for 𝑘TST given above, /B5

O
 is called the frequency factor and has a value of 6.25 ⋅

10*!	s$* at 300 K. It is of the same order of magnitude as the encounter frequency of molecules in 
liquids and comparable to the vibrational frequency of slow molecular vibrations (300 K corresponds 
to 200 cm-1), but too low if compared to the timescale of a molecular collision. 
 
Finally, we can relate the energy 𝐸+ to the Arrhenius activation energy 𝐸%. According to Tolman’s 
theorem, the activation energy of a reaction 𝐸% is equal to the difference between the mean energy of 
the reacting molecules 〈𝐸4〉 and the mean energy of all molecules 〈𝐸〉. 
 

𝐸% = 〈𝐸4〉 − 〈𝐸〉 
 
In the context of Transition State Theory, the mean energy of the reacting molecules 〈𝐸4〉 is the sum of 
the energy 𝐸+ and the mean energy of the transition state. 
 
Transition State Theory successfully describes a large number of thermal rate constants. Its 
shortcomings arise from the classical treatment of motion through the transition state. Quantum 
mechanically, the transition state cannot be treated as a definite configuration of nuclei moving at a 
given velocity. Instead, the uncertainty principle demands that the transition state is delocalized in 
space. Similarly, it cannot have an infinitesimally short lifetime at a finite energy uncertainty. We also 
assume that the potential of the reaction path is flat when we treat the motion along the reaction path as 
a free translation. This is not the case. Instead, the reaction path leads over a barrier, so that tunneling 
and quantum reflections can occur, which a classical theory cannot account for. Finally, the reaction 
path is usually curved, so that it cannot be decoupled from the other degrees of freedom. Therefore, it 
is not possible to factor the partition function of the transition state into one for the translation and one 
for the other degrees of freedom. 
 
 
8.3 THERMODYNAMIC FORMULATION 
 
We can reformulate the Transition State Theory rate constant in thermodynamic terms, so that we do 
not need to deal with partition functions, which is sometimes more convenient. Above, we have seen 
that 
 

𝑘TST =
𝑘q𝑇
ℎ

𝑄‡

𝑄�𝑄q
𝑒$

3!
/B5 =

𝑘q𝑇
ℎ
𝐾‡ 

 
with the equilibrium constant for the formation of the transition state 𝐾‡. We can associate this 
equilibrium constant with a molar standard Gibbs free energy 
 

Δ𝐺‡x = −𝑅𝑇 ln𝐾‡ 
 
to obtain 
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𝑘TST =
𝑘q𝑇
ℎ
𝑒$

E�‡T
45 =

𝑘q𝑇
ℎ
𝑒
E�‡T
4 𝑒$

EF‡T
45  

 
Here, the superscript “o” refers to the standard state. We obtain the rate constant in terms of a standard 
enthalpy and entropy of activation. We can compare this equation to the Arrhenius equation 
 

𝑘 = 𝐴𝑒$
3I
45 

 
with the activation energy 
 

𝐸% = 𝑅𝑇!
𝑑 ln 𝑘
𝑑𝑇

 
 
For the Transition State Theory rate constant, we obtain 
 

𝑅𝑇!
𝑑 ln 𝑘5�5
𝑑𝑇

= 𝑅𝑇 + 𝑅𝑇!
𝑑 ln𝐾‡

𝑑𝑇
 

 
Furthermore, the Gibbs-Helmholtz equation tells us that 
 

𝑑 ln𝐾‡

𝑑𝑇
=
Δ𝐸‡x

𝑅𝑇!
 

 
so that 
 

𝐸% = 𝑅𝑇 + Δ𝐸‡x 
 
We can relate this to the activation enthalpy	Δ𝐻‡x, assuming constant pressure 
 

Δ𝐻‡x = Δ𝐸‡x + 𝑝Δ𝑉‡x = 𝐸% − 𝑅𝑇 + 𝑝Δ𝑉‡x 
 
where Δ𝑉‡x is the activation volume. We can subsitute this into the expression for the Transition State 
Theory rate constant to obtain 
 

𝑘TST =
𝑘q𝑇
ℎ
𝑒
§*RE�

‡T

4 ¨
𝑒$

7E�‡T
45 𝑒$

3I
45 

 
We find that the Arrhenius prefactor becomes 
 

𝐴 =
𝑘q𝑇
ℎ
𝑒
§*RE�

‡T

4 ¨
𝑒$

7E�‡T
45  

 
For a reaction in solution the activation volume will be approximately zero, Δ𝑉‡x = 0. This is also the 
case for a unimolecular gas phase reaction. In this case, the expression simplifies to 
 

𝑘TST =
𝑘q𝑇
ℎ
𝑒
§*RE�

‡T

4 ¨
𝑒$

3I
45 

 
and we can identify the Arrhenius prefactor 𝐴 with 
 

𝐴 =
𝑘q𝑇
ℎ
𝑒
§*RE�

‡T

4 ¨
 



Kinetics & Dynamics 85 

 
If instead, we are for example dealing with a gas phase reaction other than a unimolecular reaction, then 
for ideal gases, 
 

𝑝Δ𝑉‡x = Δ𝑛‡𝑅𝑇 
 
where Δ𝑛‡ is the change of the particle number in the transition state, e.g. Δ𝑛‡ = −1 for a bimolecular 
reaction. In this case, we find 
 

𝑘TST =
𝑘q𝑇
ℎ
𝑒
§*$E(‡RE�

‡T

4 ¨
𝑒$

3I
45 

 
so that we can identify the Arrhenius factor with  
 

𝐴 =
𝑘q𝑇
ℎ
𝑒
§*$E(‡RE�

‡T

4 ¨
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APPENDIX A – THE GAMMA FUNCTION 
 
In the context of the kinetic theory of gases and unimolecular reaction dynamics, we frequently 
encounter integrals of the type ∫ 𝑥n𝑒$0𝑑𝑥K

+  and ∫ 𝑥(𝑒$%0%𝑑𝑥K
+ , which we can solve by means of the 

gamma function. 
 

𝚪(𝒛+ 𝟏) = P 𝒙𝒛𝒆$𝒙𝒅𝒙
K

𝟎

 

 
For any real z, integration by parts gives 
 

P 𝑥n𝑒$0𝑑𝑥
K

+

= P −𝑥n𝑒$0 + 𝑧𝑥n$*𝑒$0𝑑𝑥
K

+

= 𝑧P 𝑥n$*𝑒$0𝑑𝑥
K

+

 

or 
 

Γ(𝑧 + 1) = 	𝑧Γ(𝑧) 
 
In the special case of z being a positive integer, we find 
 

𝚪(𝒏+ 𝟏) = 𝒏! 
 
Moreover, useful relationships are 
 

Γ(1) = 1 
 

Γ }
1
2~

= √𝜋 
 
The gamma function also allows us to solve gaussian integrals of the type ∫ 𝑥(𝑒$%0%𝑑𝑥K

+ . We substitute 

𝑎𝑥! = 𝑦, so that 𝑥 = em
%
f
$
% and 𝑑𝑥 = *

!
(𝑎𝑦)$

$
%𝑑𝑦 and 

 

P 𝑥(𝑒$%0%𝑑𝑥
K

+

=
1
2
𝑎$

(R*
! P 𝑦

($*
! 	𝑒$m𝑑𝑥

K

+

=
1
2
𝑎$

(R*
! 	Γ }

𝑛 + 1
2 ~ 
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APPENDIX B – 
THE TRANSLATIONAL, ROTATIONAL, AND VIBRATIONAL PARTITION FUNCTIONS 
 
Here we derive expressions for the translational, rotation, and vibrational partition functions. 
 
Translational partition function: 
 
The eigenstates of the particle in a one-dimensional box have energies 𝜖( =

O%

�'%%
𝑛!, with the quantum 

number 𝑛 = 1, 2, … and the length of the box 𝑎. 
 
For the corresponding partition function, we obtain 
 

𝑞-r%(s,*¬ =M𝑒$
�Q
/B5

(

≈ P 𝑒$
�Q
/B5𝑑𝑛

K

+

= P 𝑒
$ O%(%
�'%%/B5𝑑𝑛

K

+

=
𝑎
ℎ¢

2𝜋𝑚𝑘q𝑇 

 
 
 
The energy of a particle in a three-dimensional box is the sum of three energies for each dimension 
 

𝜖 = 𝜖(> + 𝜖(? + 𝜖(@ 
 
Therefore, the translational partition function for motion in three dimensions is simply the product of 
three one-dimensional partition functions 
 

𝑞-r%(s = 𝑞-r%(s,*¬N = e
𝑎
ℎ¢

2𝜋𝑚𝑘q𝑇f
N
=
𝑉
ℎN
(2𝜋𝑚𝑘q𝑇)

N
! 

 
 
 
Rotational partition function: 
 
The eigenstates of the rigid rotor have energies 𝜖­ =

ℏ%

!¯
𝐽(𝐽 + 1) = ℎ𝑐𝐵	𝐽(𝐽 + 1), with the rotational 

quantum number 𝐽 = 0, 1, 2, … , the moment of inertia 𝐼 = ∑ 𝑚)𝑟)!) , and the rotational constant 𝐵. The 
degeneracy of the levels is 𝑔­ = 2𝐽 + 1. 
 

𝑞rx- =M(2𝐽 + 1)𝑒$
OIq­(­R*)

/B5

K

­.+

 

 
For ℎ𝑐𝐵 ≪ 𝑘q𝑇, we can approximate 
 

𝑞rx- ≈ P(2𝐽 + 1)𝑒$
OIq­(­R*)

/B5

K

+

𝑑𝐽 =
𝑘q𝑇
ℎ𝑐𝐵

 

 
For symmetric molecules, we have to divide the rotational partition function 𝑞rx- by the symmetry 
number 𝜎. 
 

𝑞rx- =
1
𝜎
𝑘q𝑇
ℎ𝑐𝐵
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The symmetry number is equal to the number of ways to bring the molecule into an equivalent 
configuration through proper rotations. This is essentially the number of proper rotation operations 
(including the identity 𝐸) of the point group of the molecule. For linear molecules of point group 𝐷KO 
such as CO2, 𝜎 = 2. 
 
Further examples. HCl, 𝜎 = 1; NH3, 𝜎 = 3; CH4, 𝜎 = 12. 
 
 
Vibrational partition function: 
 
The eigenstates of the harmonic oscillator have energies 𝜖g = e𝑣 + *

!
f ℏ𝜔 with the vibrational quantum 

number 𝑣 = 0, 1, … and 𝜔 = É/
�
, where the 𝑘 is the spring constant, and 𝜇 the reduced mass of the 

oscillator. 
 

𝑞g)� =M𝑒$
°gR*!±ℏ²	

/B5

K

g.+

=M𝑒$(gR
*
!)0

K

g.+

 

 
where 𝑥 = ℏ²	

/B5
 We simplify this expression as follows. 

𝑞g)�𝑒$0 =M𝑒$(gR
N
!)0

K

g.+

 

 
𝑞g)� − 𝑞g)�𝑒$0 = 𝑞g)�(1 − 𝑒$0) = 𝑒$

0
! 

 
We isolate 𝑞g)� and finally obtain 
 

𝑞g)� =
𝑒$

0
!

1 − 𝑒$0
=

𝑒$
ℏ²
!/B5

1 − 𝑒$
ℏ²
/B5

 


